XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130. DOI: 10.12363/issn.1001-1986.22.06.0503
Citation: XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130. DOI: 10.12363/issn.1001-1986.22.06.0503

Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin

More Information
  • Received Date: June 22, 2022
  • Revised Date: July 19, 2022
  • Available Online: December 29, 2022
  • Deep coalbed methane (CBM) resources (hereinafter referred to the CBM resources with the buried depth greater than 2 000 m) are abundant in China and have great potential in exploration and development. Since 2019, Daning‒Jixian block in the eastern edge of Ordos Basin has entered the stage of "scaled exploration + pilot test" of deep CBM, with the daily gas production exceeding 2 × 104 m3 in vertical wells and 10 × 104 m3 in horizontal wells. This remarkable achievement has broken through the traditional depth limitation in CBM exploration and development. Thus, the total resource of CBM is expected to increase significantly on the basis of 30.05 × 1012 m3, and the deep CBM resource will become a key direction of exploration and development for the scaled development of CBM industry in the "fourteenth five year plan" and even in long term. In view of the urgent needs of development mode with traditional surface drilling, fracturing (reservoir stimulation), drainage and production (lifting), gathering and digital intelligence as the main technologies, many basic theoretical and technical difficulties are faced in the development of the deep CBM in the eastern edge of Ordos Basin: the optimization method of favorable areas based on accumulation mechanism and occurrence state, the main control factors and control mechanism of high yield, the desorption-seepage mechanism and development law, the evaluation standard of development dessert with “geology-engineering integration”, and the determination method and basis of key development indicators, the low-cost, fast and efficient drilling and completion technology, the efficient cement sheath sealing control technology for horizontal wells, the formation mechanism of deep coal rock fracture network, the low-cost, efficient and environmentally friendly fracturing materials, the porous and permeable characteristics and flow law of fracture network after fracturing, the drainage and lifting control technology under the working conditions of high salinity, high water-gas ratio and sand production, the theory and practice system for stable operation of complex gathering pipeline network required for the efficient and energy-saving gathering and the scaled development, the digital and intelligent construction of gas field, and the application research of artificial intelligence. On the basis of systematically sorting out the above difficulties, the research direction and specific countermeasures were put forward for the theory and technology on exploration geology, development geology, well drilling and completion, fracturing (reservoir stimulation), drainage production (lifting), gathering and digital intelligence. This achievement not only has important guiding significance for accelerating the scaled production of deep CBM in the eastern edge of Ordos Basin, but also has a strong leading and demonstration role for the scaled development of deep CBM at home and abroad. In addition, it could also effectively promote the high-quality development of CBM industry, and support the realization of the national goal of "carbon peaking and carbon neutrality", so as to ensure the security of clean energy.

  • [1]
    徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14. DOI: 10.12363/issn.1001-1986.21.12.0736

    XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14. DOI: 10.12363/issn.1001-1986.21.12.0736
    [2]
    杨秀春,徐凤银,王虹雅,等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探,2022,50(3):30−41. DOI: 10.12363/issn.1001-1986.21.12.0823

    YANG Xiuchun,XU Fengyin,WANG Hongya,et al. Exploration and development process of coalbed methane in eastern margin of Ordos Basin and its enlightenment[J]. Coal Geology & Exploration,2022,50(3):30−41. DOI: 10.12363/issn.1001-1986.21.12.0823
    [3]
    徐凤银,王勃,赵欣,等. “双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探,2021,26(3):9−18.

    XU Fengyin,WANG Bo,ZHAO Xin,et al. Thoughts and suggestions on promoting high quality development of China’s CBM business under the goal of“double carbon”[J]. China Petroleum Exploration,2021,26(3):9−18.
    [4]
    闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区”的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439. DOI: 10.13225/j.cnki.jccs.CB21.0751

    YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439. DOI: 10.13225/j.cnki.jccs.CB21.0751
    [5]
    聂志宏,时小松,孙伟,等. 大宁–吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193−200. DOI: 10.12363/issn.1001-1986.21.12.0818

    NIE Zhihong,SHI Xiaosong,SUN Wei,et al. Production characteristics of deep coalbed methane gas reservoirs in Daning–Jixian block and its development technology countermeasures[J]. Coal Geology & Exploration,2022,50(3):193−200. DOI: 10.12363/issn.1001-1986.21.12.0818
    [6]
    李曙光,王红娜,徐博瑞,等. 大宁–吉县区块深层煤层气井酸化压裂产气效果影响因素分析[J]. 煤田地质与勘探,2022,50(3):165−172. DOI: 10.12363/issn.1001-1986.21.12.0800

    LI Shuguang,WANG Hongna,XU Borui,et al. Influencing factors on gas production effect of acid fractured CBM wells in deep coal seam of Daning–Jixian block[J]. Coal Geology & Exploration,2022,50(3):165−172. DOI: 10.12363/issn.1001-1986.21.12.0800
    [7]
    刘洪林,王红岩,李景明. 利用碳封存技术开发我国深层煤层气资源的思考[J]. 特种油气藏,2006,13(4):6−9. DOI: 10.3969/j.issn.1006-6535.2006.04.002

    LIU Honglin,WANG Hongyan,LI Jingming. Technology of CO2 sequestration for developing deep coal bed methane in China[J]. Special Oil & Gas Reservoirs,2006,13(4):6−9. DOI: 10.3969/j.issn.1006-6535.2006.04.002
    [8]
    孙钦平,赵群,姜馨淳,等. 新形势下中国煤层气勘探开发前景与对策思考[J]. 煤炭学报,2021,46(1):65−76. DOI: 10.13225/j.cnki.jccs.2020.1579

    SUN Qinping,ZHAO Qun,JIANG Xinchun,et al. Prospects and strategies of CBM exploration and development in China under the new situation[J]. Journal of China Coal Society,2021,46(1):65−76. DOI: 10.13225/j.cnki.jccs.2020.1579
    [9]
    杨震,孔令峰,孙万军,等. 油气开采企业开展深层煤炭地下气化业务的前景分析[J]. 天然气工业,2015,35(8):99−105. DOI: 10.3787/j.issn.1000-0976.2015.08.015

    YANG Zhen,KONG Lingfeng,SUN Wanjun,et al. Prospects of underground deep–zone coal gasification performed by oil and gas production enterprises[J]. Natural Gas Industry,2015,35(8):99−105. DOI: 10.3787/j.issn.1000-0976.2015.08.015
    [10]
    秦勇,申建,王宝文,等. 深部煤层气成藏效应及其耦合关系[J]. 石油学报,2012,33(1):48−54. DOI: 10.7623/syxb201201006

    QIN Yong,SHEN Jian,WANG Baowen,et al. Accumulation effects and coupling relationship of deep coalbed methane[J]. Acta Petrolei Sinica,2012,33(1):48−54. DOI: 10.7623/syxb201201006
    [11]
    秦勇,申建. 论深部煤层气基本地质问题[J]. 石油学报,2016,37(1):125−136.

    QIN Yong,SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica,2016,37(1):125−136.
    [12]
    李辛子,王运海,姜昭琛,等. 深部煤层气勘探开发进展与研究[J]. 煤炭学报,2016,41(1):24−31.

    LI Xinzi,WANG Yunhai,JIANG Zhaochen,et al. Progress and study on exploration and production for deep coalbed methane[J]. Journal of China Coal Society,2016,41(1):24−31.
    [13]
    申鹏磊,吕帅锋,李贵山,等. 深部煤层气水平井水力压裂技术:以沁水盆地长治北地区为例[J]. 煤炭学报,2021,46(8):2488−2500. DOI: 10.13225/j.cnki.jccs.CB21.0683

    SHEN Penglei,LYU Shuaifeng,LI Guishan,et al. Hydraulic fracturing technology for deep coalbed methane horizontal wells:A case study in north Changzhi area of Qinshui Basin[J]. Journal of China Coal Society,2021,46(8):2488−2500. DOI: 10.13225/j.cnki.jccs.CB21.0683
    [14]
    高玉巧,李鑫,何希鹏,等. 延川南深部煤层气高产主控地质因素研究[J]. 煤田地质与勘探,2021,49(2):21−27. DOI: 10.3969/j.issn.1001-1986.2021.02.003

    GAO Yuqiao,LI Xin,HE Xipeng,et al. Study on the main controlling geological factors of high yield deep CBM in southern Yanchuan block[J]. Coal Geology & Exploration,2021,49(2):21−27. DOI: 10.3969/j.issn.1001-1986.2021.02.003
    [15]
    姚红生,陈贞龙,郭涛,等. 延川南深部煤层气地质工程一体化压裂增产实践[J]. 油气藏评价与开发,2021,11(3):291−296. DOI: 10.13809/j.cnki.cn32-1825/te.2021.03.003

    YAO Hongsheng,CHEN Zhenlong,GUO Tao,et al. Stimulation practice of geology−engineering integration fracturing for deep CBM in Yanchuannan field[J]. Petroleum Reservoir Evaluation and Development,2021,11(3):291−296. DOI: 10.13809/j.cnki.cn32-1825/te.2021.03.003
    [16]
    康永尚,皇甫玉慧,张兵,等. 含煤盆地深层“超饱和”煤层气形成条件[J]. 石油学报,2019,40(12):1426−1438. DOI: 10.7623/syxb201912002

    KANG Yongshang,HUANGFU Yuhui,ZHANG Bing,et al. Formation conditions for deep oversaturated coalbed methane in coal−bearing basins[J]. Acta Petrolei Sinica,2019,40(12):1426−1438. DOI: 10.7623/syxb201912002
    [17]
    杨敏芳,孙斌,鲁静,等. 准噶尔盆地深、浅层煤层气富集模式对比分析[J]. 煤炭学报,2019,44(增刊2):601−609. DOI: 10.13225/j.cnki.jccs.2019.0100

    YANG Minfang,SUN Bin,LU Jing,et al. Comparative analysis on the enrichment patterns of deep and shallow CBM in Junggar basin[J]. Journal of China Coal Society,2019,44(Sup.2):601−609. DOI: 10.13225/j.cnki.jccs.2019.0100
    [18]
    张鹏豹,肖宇航,朱庆忠,等. 深层倾斜风化煤层特征及其对煤层气开发的影响:以河北大城区块南部为例[J]. 天然气工业,2021,41(11):86−96. DOI: 10.3787/j.issn.1000-0976.2021.11.009

    ZHANG Pengbao,XIAO Yuhang,ZHU Qingzhong,et al. Characteristics of deep inclined weathered coalbed reservoir and its influence on coalbed methane development:A case study of the southern Dacheng block of Hebei Province[J]. Natural Gas Industry,2021,41(11):86−96. DOI: 10.3787/j.issn.1000-0976.2021.11.009
    [19]
    陶传奇. 鄂尔多斯盆地东缘临兴地区深部煤层气富集成藏规律研究[D]. 北京: 中国矿业大学(北京), 2019.

    TAO Chuanqi. Deep coalbed methane accumulation and reservoiring in Linxin area, eastern Ordos Basin, China[D]. Beijing: China University of Mining & Technology (Beijing), 2019.
    [20]
    陈刚,秦勇,胡宗全,等. 准噶尔盆地白家海凸起深部含煤层气系统储层组合特征[J]. 煤炭学报,2016,41(1):80−86. DOI: 10.13225/j.cnki.jccs.2015.9001

    CHEN Gang,QIN Yong,HU Zongquan,et al. Characteristics of reservoir assemblage of deep CBM–bearing system in Baijiahai dome of Junggar Basin[J]. Journal of China Coal Society,2016,41(1):80−86. DOI: 10.13225/j.cnki.jccs.2015.9001
    [21]
    房大志,程泽虎,李佳欣. 渝东南地区超深层煤层气高效压裂技术及精细排采制度研究与实践:以NY1井为例[J]. 煤田地质与勘探,2022,50(5):50−56. DOI: 10.12363/issn.1001-1986.21.08.0437

    FANG Dazhi,CHENG Zehu,LI Jiaxin. Efficient fracturing technology and fine drainage system of ultra–deep coalbed methane in southeast Chongqing:A case study of NY1 well[J]. Coal Geology & Exploration,2022,50(5):50−56. DOI: 10.12363/issn.1001-1986.21.08.0437
    [22]
    郭绪杰,支东明,毛新军,等. 准噶尔盆地煤岩气的勘探发现及意义[J]. 中国石油勘探,2021,26(6):38−49. DOI: 10.3969/j.issn.1672-7703.2021.06.003

    GUO Xujie,ZHI Dongming,MAO Xinjun,et al. Discovery and significance of coal measure gas in Junggar Basin[J]. China Petroleum Exploration,2021,26(6):38−49. DOI: 10.3969/j.issn.1672-7703.2021.06.003
    [23]
    李勇,孟尚志,吴鹏,等. 煤层气成藏机理及气藏类型划分:以鄂尔多斯盆地东缘为例[J]. 天然气工业,2017,37(8):22−30. DOI: 10.3787/j.issn.1000-0976.2017.08.003

    LI Yong,MENG Shangzhi,WU Peng,et al. Accumulation mechanisms and classification of CBM reservoir types:A case study from the eastern margin of the Ordos Basin[J]. Natural Gas Industry,2017,37(8):22−30. DOI: 10.3787/j.issn.1000-0976.2017.08.003
    [24]
    马行陟,宋岩,柳少波,等. 鄂尔多斯盆地东缘韩城地区煤层气地球化学特征及其成因[J]. 天然气工业,2011,31(4):17−20. DOI: 10.3787/j.issn.1000-0976.2011.04.004

    MA Xingzhi,SONG Yan,LIU Shaobo,et al. Origins and geochemical characteristics of coalbed methane in Hancheng,eastern Ordos Basin[J]. Natural Gas Industry,2011,31(4):17−20. DOI: 10.3787/j.issn.1000-0976.2011.04.004
    [25]
    秦勇. 煤系气聚集系统与开发地质研究战略思考[J]. 煤炭学报,2021,46(8):2387−2399. DOI: 10.13225/j.cnki.jccs.cb21.0719

    QIN Yong. Strategic thinking on research of coal measure gas accumulation system and development geology[J]. Journal of China Coal Society,2021,46(8):2387−2399. DOI: 10.13225/j.cnki.jccs.cb21.0719
    [26]
    李勇,汤达祯,孟尚志,等. 鄂尔多斯盆地东缘煤储层地应力状态及其对煤层气勘探开发的影响[J]. 矿业科学学报,2017,2(5):416−424. DOI: 10.19606/j.cnki.jmst.2017.05.002

    LI Yong,TANG Dazhen,MENG Shangzhi,et al. The in−situ stress of coal reservoirs in east margin of Ordos Basin and its influence on coalbed methane development[J]. Journal of Mining Science and Technology,2017,2(5):416−424. DOI: 10.19606/j.cnki.jmst.2017.05.002
    [27]
    李勇,许卫凯,高计县,等. “源–储–输导系统”联控煤系气富集成藏机制:以鄂尔多斯盆地东缘为例[J]. 煤炭学报,2021,46(8):2440−2453.

    LI Yong,XU Weikai,GAO Jixian,et al. Mechanism of coal measure gas accumulation under integrated control of“source reservoir–transport system”:A case study from east margin of Ordos Basin[J]. Journal of China Coal Society,2021,46(8):2440−2453.
    [28]
    闫霞,温声明,聂志宏,等. 影响煤层气开发效果的地质因素再认识[J]. 断块油气田,2020,27(3):375−380.

    YAN Xia,WEN Shengming,NIE Zhihong,et al. Re−recognition of geological factors affecting coalbed methane development effect[J]. Fault−Block Oil & Gas Field,2020,27(3):375−380.
    [29]
    闫霞,徐凤银,张雷,等. 微构造对煤层气的控藏机理与控产模式[J]. 煤炭学报,2022,47(2):893−905.

    YAN Xia,XU Fengyin,ZHANG Lei,et al. Reservoir−controlling mechanism and production−controlling patterns of microstructure to coalbed methane[J]. Journal of China Coal Society,2022,47(2):893−905.
    [30]
    李贵红,张泓. 鄂尔多斯盆地东缘煤层气藏演化及其差异分析[J]. 中国煤层气,2020,17(3):3−8.

    LI Guihong,ZHANG Hong. Evolution history of coalbed methane reservoir and its difference in eastern Ordos Basin[J]. China Coalbed Methane,2020,17(3):3−8.
    [31]
    沈玉林,秦勇,申建,等. 鄂尔多斯盆地东缘上古生界煤系叠置含气系统发育的沉积控制机理[J]. 天然气工业,2017,37(11):29−35. DOI: 10.3787/j.issn.1000-0976.2017.11.004

    SHEN Yulin,QIN Yong,SHEN Jian,et al. Sedimentary control mechanism of the superimposed gas bearing system development in the Upper Palaeozoic coal measures along the eastern margin of the Ordos Basin[J]. Natural Gas Industry,2017,37(11):29−35. DOI: 10.3787/j.issn.1000-0976.2017.11.004
  • Related Articles

    [1]NIE Zhihong, XU Fengyin, SHI Xiaosong, XIONG Xianyue, SONG Wei, ZHANG Lei, LIU Ying, SUN Wei, FENG Yanqing, LIU Shirui, YAN Xia, SUN Xiaoyi, WU Mansheng. Outcomes and implications of pilot tests for deep coalbed methane production on the eastern margin of the Ordos Basin[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(2): 1-12. DOI: 10.12363/issn.1001-1986.23.10.0645
    [2]GUO Guangshan, XU Fengyin, LIU Lifang, CAI Yidong, QIN Wei, CHEN Zhaohui, DENG Jimei, LI Zhuolun. Characteristics and favorable area evaluation of deep coalbed methane accumulation in Fugu area of the Ordos Basin[J]. COAL GEOLOGY & EXPLORATION.
    [3]LIU Xiangbai, TAO Shizhen, YANG Xiuchun, ZHAO Qun, CHEN Yanyan, LIU Ziyang, PEI Xiangbing, WANG Longfei, YI Wei, FENG Jianqiu, ZHANG Tan, GAO Jianrong, TAO Xiaowan, LIU Zhuangxiaoxue, LI Chaozheng, YANG Yiqing, CHEN Yue. Accumulation mechanisms and resource potential of helium in coal measures: A case study of the eastern margin of the Ordos Basin[J]. COAL GEOLOGY & EXPLORATION.
    [4]SUN Yue, JIANG Yuqiang, XIONG Xianyue, LI Xingtao, LI Shuxin, QIU Zhen, SUN Xiongwei. Lithofacies and sedimentary environment evolution of the Shan2 3 Sub-member transitional shale of the Shanxi Formation in the Daning-Jixian area, eastern Ordos Basin[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(9): 104-114. DOI: 10.12363/issn.1001-1986.21.12.0821
    [5]ZHU Guanghui, LI Zhongcheng, SHI Suzhen, SHI Hao, LIN Liming, LIU Yancheng, ZHANG Xin. Multi-scale prediction of coal seam fracture development in MG block, eastern margin of Ordos Basin[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(3): 173-182. DOI: 10.12363/issn.1001-1986.21.12.0812
    [6]YANG Xiuchun, XU Fengyin, WANG Hongya, LI Shuguang, LIN Wenji, WANG Wei, HAO Shuai. Exploration and development process of coalbed methane in eastern margin of Ordos Basin and its enlightenment[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(3): 30-41. DOI: 10.12363/issn.1001-1986.21.12.0823
    [7]TIAN Wenguang, XIAO Jianxin, ZHANG Jidong, ZHAO Suping. CBM reservoir-cap formation type and its gas controlling function in the eastern margin of Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(4): 31-35. DOI: 10.3969/j.issn.1001-1986.2015.04.007
    [8]LI Guihong. Selection of the favorable coalbed methane(CBM) blocks in eastern Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(2): 28-32. DOI: 10.3969/j.issn.1001-1986.2015.02.006
    [9]WANG Linlin, JIANG Bo, QU Zhenghui. Structural control on gas content distribution in eastern margin of Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(1): 14-19,24. DOI: 10.3969/j.issn.1001-1986.2013.01.003
    [10]BAI Bin, YANG Wen-jing, ZHOU Li-fa, LIU Zhe, ZHANG Yi-kai. Sediment provenance analysis and tectonic setting discrimination of Shanxi Formation on west edge of Ordos Basin[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(4): 8-11.

Catalog

    Article Metrics

    Article views (1671) PDF downloads (515) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return