ZHU Guanghui,LI Zhongcheng,SHI Suzhen,et al. Multi-scale prediction of coal seam fracture development in MG block, eastern margin of Ordos Basin[J]. Coal Geology & Exploration,2022,50(3):173−182. DOI: 10.12363/issn.1001-1986.21.12.0812
Citation: ZHU Guanghui,LI Zhongcheng,SHI Suzhen,et al. Multi-scale prediction of coal seam fracture development in MG block, eastern margin of Ordos Basin[J]. Coal Geology & Exploration,2022,50(3):173−182. DOI: 10.12363/issn.1001-1986.21.12.0812

Multi-scale prediction of coal seam fracture development in MG block, eastern margin of Ordos Basin

More Information
  • Received Date: December 08, 2021
  • Revised Date: February 22, 2022
  • Available Online: March 27, 2022
  • Published Date: February 28, 2022
  • Finding out the development characteristics of coal seam fractures is of great significance for coalbed methane exploitation and safe production of underground coal mines. Logging and seismic are effective means of geophysical identification of coal seam fractures. Electrical imaging, resistivity, density, sonic differential time, natural gamma, neutron porosity and array acoustic logs are used to describe the small scale fracture morphology of No.8 and No.9 coal seams of MG block in the eastern margin of Ordos Basin. The middle-scale fracture of No.8 and No.9 coal seams was predicted by prestack Azimuth AVO inversion in OVT domain. And the large-scale fracture distribution of No.8 and No.9 coal seams in the study area was described in detail based on the poststack seismic intrinsic coherence, coherent enhancement attribute and fracture simulation attribute. According to the post-stack seismic data and pre-stack inversion analysis, the fractures of No.8 and No.9 coal seams in the study area developed two groups of NW and NNE trending fractures. This work has established a multi-scale geophysical prediction method of coal seam fractures from micro to macro, which will provide important geological basis for coalbed methane exploration selection and coal seam safety mining in the study area.
  • [1]
    彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345. PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345.
    [2]
    李五忠,孙斌,孙钦平,等. 以煤系天然气开发促进中国煤层气发展的对策分析[J]. 煤炭学报,2016,41(1):67−71. LI Wuzhong,SUN Bin,SUN Qinping,et al. Analysis on coal−bed methane development based on coal measure gas in China and its countermeasure[J]. Journal of China Coal Society,2016,41(1):67−71.
    [3]
    姜婷婷,张建华,黄刚. 煤岩水力压裂裂缝扩展形态试验研究[J]. 岩土力学,2018,39(10):3677−3684. JIANG Tingting,ZHANG Jianhua,HUANG Gang. Experimental study of fracture geometry during hydraulic fracturing in coal[J]. Rock and Soil Mechanics,2018,39(10):3677−3684.
    [4]
    崔若飞,钱进,陈同俊,等. 利用地震P波确定煤层瓦斯富集带的分布[J]. 煤田地质与勘探,2007,35(6):54−56. CUI Ruofei,QIAN Jin,CHEN Tongjun,et al. Locating the distribution of coalbed methane enriched area using seismic P–wave data[J]. Coal Geology & Exploration,2007,35(6):54−56. DOI: 10.3969/j.issn.1001-1986.2007.06.014
    [5]
    孟召平,彭苏萍,傅继彤. 含煤岩系岩石力学性质控制因素探讨[J]. 岩石力学与工程学报,2002,21(1):102−106. MENG Zhaoping,PENG Suping,FU Jitong. Study on control factors of rock mechanics properties of coal−bearing formation[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(1):102−106. DOI: 10.3321/j.issn:1000-6915.2002.01.022
    [6]
    何文渊, 毕建军, 陈彦虎, 等. 地震波形指示反演方法、原理及应用[M]. 北京: 科学出版社, 2021.
    [7]
    朱兆林,王永刚,曹丹平. 裂缝性储层AVO检测方法综述[J]. 勘探地球物理进展,2004,27(2):87−92. ZHU Zhaolin,WANG Yonggang,CAO Danping. Review of AVO detection methods for fractured reservoirs[J]. Progress in Exploration Geophysics,2004,27(2):87−92.
    [8]
    GARY D, TODOROVICMARINIC D. Fracture detection using 3D azimuthal AVO[C]. CSEG Recorder, 2004: 5–8.
    [9]
    张立勤,彭苏萍,李国发,等. 方位AVO技术检测储层各向异性的方法和实践[J]. 天然气工业,2005,25(10):38−40. ZHANG Liqin,PENG Suping,LI Guofa,et al. The method and practice of detecting reservoir anisotropy with 3D P–wave azimuth AVO[J]. Natural Gas Industry,2005,25(10):38−40. DOI: 10.3321/j.issn:1000-0976.2005.10.013
    [10]
    XU Xiaoxia,TSVANKIN I. A case study of azimuthal AVO analysis with anisotropic spreading correction[J]. The Leading Edge,2007,26(1):1552−1561.
    [11]
    章静,吴海波,张平松,等. 基于叠前AVO属性的煤层瓦斯含量预测[J]. 地球物理学进展,2020,35(5):2033−2039. ZHANG Jing,WU Haibo,ZHANG Pingsong,et al. Coal seam gas content prediction based on pre−stack AVO attributes[J]. Progress in Geophysics,2020,35(5):2033−2039. DOI: 10.6038/pg2020DD0338
    [12]
    WANG Lingling,WEI Jianxin,HUANG Ping,et al. Seismic prediction method of multiscale fractured reservoir[J]. Applied Geophysics,2018,15(2):240−252. DOI: 10.1007/s11770-018-0667-8
    [13]
    CHEN Shuangquan,ZENG Lianbo,HUANG Ping,et al. The application study on the multi–scales integrated prediction method to fractured reservoir description[J]. Applied Geophysics,2016,13(1):80−92. DOI: 10.1007/s11770-016-0531-7
    [14]
    陈志刚,马文杰,赵宏忠,等. 利用叠后地震资料方位强度属性预测开启裂缝[J]. 地球物理学进展,2020,35(5):1745−1750. CHEN Zhigang,MA Wenjie,ZHAO Hongzhong,et al. Prediction of openness fracture with azimuthal intensity based on post–stack seismic data[J]. Progress in Geophysics,2020,35(5):1745−1750. DOI: 10.6038/pg2020DD0299
    [15]
    段茜,刘向君,梁利喜,等. 裂缝参数对纵波各向异性影响的数值模拟[J]. 石油地球物理勘探,2020,55(3):575−583. DUAN Xi,LIU Xiangjun,LIANG Lixi,et al. Numerical simulation to the influence of fracture parameters on P–wave anisotropy[J]. Oil Geophysical Prospecting,2020,55(3):575−583.
    [16]
    李勤,王玮,马随波,等. HTI煤层方位AVO响应与裂隙识别[J]. 地球物理学进展,2021,36(1):178−186. LI Qin,WANG Wei,MA Suibo,et al. Analysis of azimuthal AVO response and crack identification on HTI tectonic coal[J]. Progress in Geophysics,2021,36(1):178−186. DOI: 10.6038/pg2021DD0358
    [17]
    陈同俊,王新,崔若飞. 基于方位AVO正演的HTI构造煤裂隙可探测性分析[J]. 煤炭学报,2010,35(4):640−644. CHEN Tongjun,WANG Xin,CUI Ruofei. The detectability analysis on HTI tectonic coal cracks by azimuthal AVO’s forward modeling[J]. Journal of China Coal Society,2010,35(4):640−644.
    [18]
    SUN Zandong,XIAO Xi,CHEN Lei,et al. P–wave fracture prediction algorithm using data with limited azimuthal distribution[J]. The Leading Edge,2012,31(2):198−205. DOI: 10.1190/1.3686918
    [19]
    CHEN Huaizhen, ZHANG Guangzhi, YIN Xingyao. AVAZ inversion for fluid factor based on fractured anisotropic rock physics theory[C]//SEG Technical Program Expand Abstracts, 2013.
    [20]
    MIAO Xiaogui, QIU Rui, QIN Hongguo, et al. Unconventional gas detection by AVAZ and elastic inversion: A case study in central Sichuan Basin, China[C]//SEG Technical Program Expand Abstracts, 2013.
    [21]
    PENG Lingli, SUN S Z, ZHANG Yuanyin. Fracture prediction and its fluid identification of complex carbonate reservoir: A case study in HA7 area, Tarim Basin[C]//SEG Technical Program Expanded Abstracts, 2013.
    [22]
    ALHUSSAIN M, SEN M K. Quantitative estimation of fracture parameters after removing anisotropic overburden effect[C]. SEG Technical Program Expand Abstracts, 2013.
    [23]
    MAHMOUDIAN F, MARGRAVE G F. AVAZ inversion for fracture orientation and intensity: A physical modeling study[C]. EAGE Conference & Exhibition, 2013.
    [24]
    SKOPINTSEVA L,ALKHALIFAH T. An analysis of AVO inversion for postcritical offsets in HTI media[J]. Geophysics,2013,78(3):11−20. DOI: 10.1190/geo2011-0288.1
    [25]
    刘军迎,雍学善,张静,等. 基于叠前全方位角道集方位振幅梯度各向异性变化的HTI裂缝介质油气检测方法与技术[J]. 地球物理学报,2021,64(10):3807−3816. LIU Junying,YONG Xueshan,ZHANG Jing,et al. Oil and gas detection method and technique of HTI fracture media based on the anisotropic variation of azimuth−amplitude gradient in pre–stack omni–directional incidence–angular gather[J]. Chinese Journal of Geophysics,2021,64(10):3807−3816. DOI: 10.6038/cjg2021O0481
    [26]
    张广智,杜炳毅,李海山,等. 页岩气储层纵横波叠前联合反演方法[J]. 地球物理学报,2014,57(12):4141−4149. ZHANG Guangzhi,DU Bingyi,LI Haishan,et al. The method of joint pre–stack inversion of PP and P–SV waves in shale gas reservoirs[J]. Chinese Journal of Geophysics,2014,57(12):4141−4149. DOI: 10.6038/cjg20141225
    [27]
    李娟,田忠斌,申有义,等. OVT域叠前裂缝预测技术在沁水盆地煤层气勘探中的应用[J]. 中国煤炭地质,2021,33(9):67−72. LI Juan,TIAN Zhongbin,SHEN Youyi,et al. Application of OVT domain pre–stack fissure prediction technology on CBM exploration in Qinshui Basin[J]. Coal Geology of China,2021,33(9):67−72.
    [28]
    印兴耀,刘志国,李春鹏,等. 裂缝型储层预测的稳定方位AVO梯度无约束反演方法研究[J]. 石油物探,2014,53(6):683−691. YIN Xingyao,LIU Zhiguo,LI Chunpeng,et al. Fracture formation prediction with a steady azimuth AVO gradient unconstrained inversion method[J]. Geophysical Prospecting for Petroleum,2014,53(6):683−691. DOI: 10.3969/j.issn.1000-1441.2014.06.008
    [29]
    CHEN Huaizhen,YIN Xingyao,QU Shouli,et al. AVAZ inversion for fracture weakness parameters based on the rock physics model[J]. Journal of Geophysics and Engineering,2014,11(6):065007. DOI: 10.1088/1742-2132/11/6/065007
    [30]
    李春鹏,印兴耀,刘志国,等. 裂缝型储层预测的各向异性梯度反演方法研究[J]. 石油物探,2017,56(6):835−840. LI Chunpeng,YIN Xingyao,LIU Zhiguo,et al. An anisotropic gradient inversion for fractured reservoir prediction[J]. Geophysical Prospecting for Petroleum,2017,56(6):835−840. DOI: 10.3969/j.issn.1000-1441.2017.06.009
    [31]
    葛子建,李景叶,陈小宏,等. 基于贝叶斯线性AVAZ的TTI介质裂缝参数反演[J]. 地球物理学报,2018,61(7):3008−3018. GE Zijian,LI Jingye,CHEN Xiaohong,et al. Bayesian linearized AVAZ inversion for fracture weakness parameters in TTI medium[J]. Chinese Journal of Geophysics,2018,61(7):3008−3018. DOI: 10.6038/cjg2018L0703
    [32]
    赵文韬,荆铁亚,白俊雨,等. 基于全方位地震数据的方位AVO(AVAZ)反演[J]. 地球物理学进展,2018,33(3):1184−1189. ZHAO Wentao,JING Tieya,BAI Junyu,et al. AVAZ inversion methord based on full azimuth seismic data[J]. Progress in Geophysics,2018,33(3):1184−1189. DOI: 10.6038/pg2018BB0180
    [33]
    LIU Yuwei,LIU Xiwu,LU Yongxu,et al. Fracture prediction approach for oil–bearing reservoirs based on AVAZ attributes in an orthorhombic medium[J]. Petroleum Science,2018,15(3):510−520. DOI: 10.1007/s12182-018-0250-1
    [34]
    潘新朋,张广智,印兴耀. 岩石物理驱动的正交各向异性方位叠前地震反演方法[J]. 中国科学:地球科学,2018,48(3):299−314. PAN Xinpeng,ZHANG Guangzhi,YIN Xingyao. Azimuthally pre–stack seismic inversion for orthorhombic anisotropy driven by rock physics[J]. Scientia Sinica(Terrae),2018,48(3):299−314.
    [35]
    CONNOLLY P. Elastic impedance[J]. The Leading Edge,1999,18(4):438−452. DOI: 10.1190/1.1438307
    [36]
    WHITCOMBE D N. Elastic impedance normalization[J]. Geophysics,2002,67(1):60−62. DOI: 10.1190/1.1451331
    [37]
    曲寿利,季玉新,王鑫,等. 全方位P波属性裂缝检测方法[J]. 石油地球物理勘探,2001,36(4):390−397. QU Shouli,JI Yuxin,WANG Xin,et al. Seismic method for using full−azimuth P−wave attribution to detect fracture[J]. Oil Geophysical Prospecting,2001,36(4):390−397. DOI: 10.3321/j.issn:1000-7210.2001.04.002
    [38]
    MARTINS J L. Elastic impedance in weakly anisotropic media[J]. Geophysics,2006,71(3):D73−D83. DOI: 10.1190/1.2195448
    [39]
    陈天胜,魏修成,刘洋. 一种新的各向异性弹性阻抗近似公式[J]. 石油物探,2006,45(6):563−569. CHEN Tiansheng,WEI Xiucheng,LIU Yang. New approximation formula for calculation of elastic impedance in anisotropic media[J]. Geophysical Prospecting for Petroleum,2006,45(6):563−569. DOI: 10.3969/j.issn.1000-1441.2006.06.002
    [40]
    李慧琼,张盟勃,蒲仁海,等. 黄257井区叠前纵波方位各向异性裂缝分布预测[J]. 石油地球物理勘探,2017,52(2):350−359. LI Huiqiong,ZHANG Mengbo,PU Renhai,et al. Late Triassic fracture detection with seismic azimuth anisotropics in Huang 257 survey,Ordos Basin[J]. Oil Geophysical Prospecting,2017,52(2):350−359.
    [41]
    赵才顺,万欢,张昊,等. 纵波方位各向异性正演模拟及叠前裂缝检测应用研究:以鄂尔多斯盆地致密砂岩气区块为例[J]. 地球物理学进展,2019,34(1):257−265. ZHAO Caishun,WAN Huan,ZHANG Hao,et al. Research application of the P−wave anisotropy forward modeling and pre−stack fracture detection:Take the tight sandstone gas block in Ordos Basin as an example[J]. Progress in Geophysics,2019,34(1):257−265. DOI: 10.6038/pg2019BB0472
    [42]
    魏欣伟,薛姣,罗霞. 基于OVT域地震数据的叠前AVOA裂缝密度反演[J]. 石油物探,2021,60(5):816−825. WEI Xinwei,XUE Jiao,LUO Xia. Fracture density estimation using an amplitude−versus−offset−and−azimuth inversion based on pre−stack seismic data in the offset vector tile domain[J]. Geophysical Prospecting for Petroleum,2021,60(5):816−825. DOI: 10.3969/j.issn.1000-1441.2021.05.012
    [43]
    苑书金,于常青. 各向异性介质中的弹性阻抗及其反演[J]. 地球物理学进展,2006,21(2):520−523. YUAN Shujin,YU Changqing. Elastic impedance and seismic inversion in anisotropic media[J]. Progress in Geophysics,2006,21(2):520−523. DOI: 10.3969/j.issn.1004-2903.2006.02.028
    [44]
    李爱山,印兴耀,张繁昌,等. VTI介质中的弹性阻抗与参数提取[J]. 地球物理学进展,2008,23(6):1878−1885. LI Aishan,YIN Xingyao,ZHANG Fanchang,et al. Elastic impedance in VTI media and parameter extraction[J]. Progress in Geophysics,2008,23(6):1878−1885.
    [45]
    陈怀震,印兴耀,张金强,等. 基于方位各向异性弹性阻抗的裂缝岩石物理参数反演方法研究[J]. 地球物理学报,2014,57(10):3431−3441. CHEN Huaizhen,YIN Xingyao,ZHANG Jinqiang,et al. Seismic inversion for fracture rock physics parameters using azimuthally anisotropic elastic impedance[J]. Chinese Journal of Geophysics,2014,57(10):3431−3441. DOI: 10.6038/cjg20141029
    [46]
    罗辑,吴国忱,宗兆云,等. 基于方位弹性阻抗反演的裂缝型储层流体检测方法[J]. 石油地球物理勘探,2015,50(6):1154−1165. LUO Ji,WU Guochen,ZONG Zhaoyun,et al. Fluid identification in fractured reservoirs based on azimuthal elastic impedance inversion[J]. Oil Geophysical Prospecting,2015,50(6):1154−1165.
    [47]
    吴国忱,赵小龙,罗辑,等. 基于扰动弹性阻抗的裂缝参数反演方法[J]. 石油地球物理勘探,2017,52(2):340−349. WU Guochen,ZHAO Xiaolong,LUO Ji,et al. Fracture parameter inversion based on perturbation elastic impedance[J]. Oil Geophysical Prospecting,2017,52(2):340−349.
    [48]
    韩必武,李栋青,范秦军. 正交多极子阵列声波测井在煤田勘探中的应用:以淮南顾桥煤矿补7井区为例[J]. 科技创新与应用,2021(2):20−25. HAN Biwu,LI Dongqing,FAN Qinjun. Application of orthogonal multipole array acoustic logging in coalfield exploration:With No.7 well area of Guqiao coal mine in Huainan as an example[J]. Technology Innovation and Application,2021(2):20−25.
    [49]
    RÜGER A. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry[J]. Geophysics,1997,62(3):713−722.
    [50]
    RÜGER A. Variation of P-wave reflectivity with offset and azimuth in anisotropic media[J]. Geophysics,1998,63(3):935−947.
  • Related Articles

    [1]TONG Jiangnan, WANG Feng, ZHANG Feng, HOU Wei, LI Zhongbai, JI Liang, JIANG Yanan, SUN Wei. Application of five seismic attributes in natural fracture prediction for deep coalbed methane production along the eastern margin of the Ordos Basin[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(4): 222-234. DOI: 10.12363/issn.1001-1986.24.08.0547
    [2]YU Reng'an, SIMA Xianzhang, LI Jianguo, WANG Shanbo, YANG Jun, LIU Xiaoxue. Response characteristics of lithologic logging of Zhiluo Formation in Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(6): 33-39,51. DOI: 10.3969/j.issn.1001-1986.2018.06.005
    [3]XU Hao, TANG Dazhen, TANG Shuhuan, ZHANG Wenzhong, ZHANG Songhang, TAO Shu, WANG Feng. Coal reservoir characteristics and prospective areas for Jurissic CBM exploitation in western Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(1): 26-28,32. DOI: 10.3969/j.issn.1001-1986.2010.01.006
    [4]LIU Zhi-wu, HAN Dai-cheng, ZHOU Li-fa. Natural gas prospecting foreground of the Palaeozoic in southeastern Ordos Basin[J]. COAL GEOLOGY & EXPLORATION, 2008, 38(5): 24-30.
    [5]LI Xiao-yan, SI Sheng-li. The hydrocarbon potential and precursor types of coal pyrogenation in Ordos Basin[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(3): 1-5,11.
    [6]LI Xiao-yan, WANG Jie-ling, ZHAO Ping. Classification and evaluation of the high quality coal in Ordos Basin[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(4): 1-4.
    [7]LIANG Ji-wei, LI Wen-hou, ZHANG Feng, LIN Feng, GUO Yan-qin, CHEN Quan-hong, WANG Ruo-gu. Coal-accumulation of lower member of Shanxi Formation in northeastern Ordos Basin[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(1): 7-11.
    [8]YAO Su-ping, ZHANG Jing-rong, HU Wen-xuan, CAO Jian. Experimental study of hydrocarbon generation potentiality of Mesozoic coal measure, Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(1): 24-28.
    [9]Li Hengtang, Lu Zhifa. TREND SURFACE ANALYSIS OF THE CONTROL OF PALEOTECTONICS TO COAL ACCUMULATION OF YANAN FORMATION IN ORDOS BASIN[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(5): 5-9.
    [10]GAO Xuanzheng. LITHOFACIES PALAEOGEOGRAPHY OF LOWER JURASSIC IN ORDOS BASIN[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(3): 1-5.
  • Cited by

    Periodical cited type(20)

    1. 李建林,薛杨,王心义,徐博博,郭水涛. 基于模糊综合评价的导水通道超前探查判识技术. 煤炭科学技术. 2024(07): 178-186 .
    2. 白怀东,范玉海,冯喜珍. 无线电波透视法在何家塔煤矿50106工作面的应用. 能源与节能. 2023(05): 1-5 .
    3. 王铮,易洪春. 无线电波透视技术在工作面隐伏地质构造探测中的应用. 煤炭与化工. 2023(06): 59-63 .
    4. 王庆. 准格尔矿区煤矿井下水害综合防治技术. 煤矿安全. 2021(06): 104-108 .
    5. 刘卫卫. 定向钻探在工作面电法异常探查中的应用. 煤炭技术. 2021(07): 75-77 .
    6. 侯海龙. 无线电波坑道透视技术在煤矿综采工作面的应用. 能源与节能. 2021(09): 182-184+186 .
    7. 孙全业. 唐家会煤矿复杂地质条件下智能化建设探索与实践. 中国煤炭. 2021(S1): 69-78 .
    8. 宋永,覃觅觅. 电磁精细探测法在隐伏型导水地质裂缝勘探中的应用. 水利水电技术. 2020(02): 184-191 .
    9. 冀前辉,郝世俊,王程,刘卫卫. 复合勘探技术在煤矿工作面水害防治中的应用. 工矿自动化. 2020(03): 79-83 .
    10. 江微娜. 无线电波透视探查地质异常区的应用与分析. 能源与环保. 2020(03): 61-65 .
    11. 张志伟. 短工作面陷落柱无线电波透视探测研究及应用. 能源与环保. 2020(04): 92-96 .
    12. 窦文武,卫金善,焦阳,杨高峰,吉泽宇. 矿井分布式地震超前探测系统研究与应用. 煤田地质与勘探. 2020(02): 228-234 . 本站查看
    13. 王振环. 浅析复合勘探技术在煤矿工作面水害中的应用. 当代化工研究. 2020(14): 92-93 .
    14. 王龙成,杨高峰. YDT88坑透仪在回采工作面陷落柱探测中的应用. 煤炭科技. 2020(04): 116-118 .
    15. 杨高峰,卫金善,杨新亮,窦文武. YDT88无线电波透视仪在地质异常体探测中的应用. 陕西煤炭. 2020(06): 131-134 .
    16. 蒋庆丰,吴茂林. 无线电波透视法在张集煤矿1122(1)工作面探测中的应用. 绿色科技. 2019(02): 159-160+182 .
    17. 牟义. 综采工作面带压区域电磁波CT探测小构造技术. 煤矿安全. 2019(12): 69-75 .
    18. 郝海涛. 无线电波坑道透视仪在煤矿生产中的应用. 科学技术创新. 2018(08): 185-186 .
    19. 袁鹏. 井间电磁探测技术正演模拟计算. 科学技术创新. 2017(20): 62-63 .
    20. 李德山. 井间电磁波层析成像技术应用进展. 科学技术创新. 2017(20): 1-2 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (350) PDF downloads (101) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return