Citation: | ZHU Qingzhong. Theoretical basis of dredging and efficient development of high−rank coalbed methane in China: A case study of the Qinshui Basin[J]. Coal Geology & Exploration,2022,50(3):82−91. DOI: 10.12363/issn.1001-1986.21.12.0845 |
[1] |
朱庆忠,杨延辉,左银卿,等. 对于高煤阶煤层气资源科学开发的思考[J]. 天然气工业,2020,40(1):55−60. ZHU Qingzhong,YANG Yanhui,ZUO Yinqing,et al. On the scientific exploitation of high-rank CBM resources[J]. Natural Gas Industry,2020,40(1):55−60. DOI: 10.3787/j.issn.1000-0976.2020.01.007
|
[2] |
陈跃,马卓远,马东民,等. 不同宏观煤岩组分润湿性差异及对甲烷吸附解吸的影响[J]. 煤炭科学技术,2021,49(11):47−55. CHEN Yue,MA Zhuoyuan,MA Dongmin,et al. Effects of wettability differences of different macroscopic composition of coal on methane adsorption and desorption[J]. Coal Science and Technology,2021,49(11):47−55.
|
[3] |
李沛,马东民,张辉,等. 高、低阶煤润湿性对甲烷吸附/解吸的影响[J]. 煤田地质与勘探,2016,44(5):80−85. LI Pei,MA Dongmin,ZHANG Hui,et al. Influence of high and low rank coal wettability and methane adsorption/desorption characteristics[J]. Coal Geology & Exploration,2016,44(5):80−85. DOI: 10.3969/j.issn.1001-1986.2016.05.015
|
[4] |
村田逞诠. 煤的润湿性研究及其应用[M]. 朱春笙, 龚祯祥译. 北京: 煤炭工业出版社, 1992.
|
[5] |
孙晓晓,姚艳斌,陈基瑜,等. 基于低场核磁共振的煤润湿性分析[J]. 现代地质,2015,29(1):190−197. SUN Xiaoxiao,YAO Yanbin,CHEN Jiyu,et al. Determination of coal wettability by using low-field nuclear magnetic resonance[J]. Geoscience,2015,29(1):190−197. DOI: 10.3969/j.issn.1000-8527.2015.01.023
|
[6] |
董平,单忠健,李哲. 超细煤粉表面润湿性的研究[J]. 煤炭学报,2004,29(3):346−349. DONG Ping,SHAN Zhongjian,LI Zhe. Study on the surface wet characteristic of ultrafine coal powder[J]. Journal of China Coal Society,2004,29(3):346−349. DOI: 10.3321/j.issn:0253-9993.2004.03.020
|
[7] |
王诗萌. 润湿性岩石表面气体吸附行为的分子模拟研究[D]. 北京: 中国石油大学(北京), 2016.
WANG Shimeng. Molecular dynamics investigation on the adsorption behaviors of gases on wetting rock surface[D]. Beijing: China University of Petroleum(Beijing), 2016.
|
[8] |
刘谦,郭玉森,赖永明,等. 煤的吸附特性与表面能关系的实验研究[J]. 煤矿安全,2015,46(9):20−22. LIU Qian,GUO Yusen,LAI Yongming,et al. Experimental research on relationship between adsorption characteristics and surface energy of coal[J]. Safety in Coal Mines,2015,46(9):20−22.
|
[9] |
谢松彬,姚艳斌,陈基瑜,等. 煤储层微小孔孔隙结构的低场核磁共振研究[J]. 煤炭学报,2015,40(增刊1):170−176. XIE Songbin,YAO Yanbin,CHEN Jiyu,et al. Research of micro-pore structure in coal reservoir using low-field NMR[J]. Journal of China Coal Society,2015,40(Sup.1):170−176.
|
[10] |
YAO Yanbin,LIU Dameng,CHE Yao,et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel,2010,89(7):1371−1380. DOI: 10.1016/j.fuel.2009.11.005
|
[11] |
ZHENG Sijian,YAO Yanbin,ELSWORTH D,et al. A novel pore size classification method of coals:Investigation based on NMR relaxation[J]. Journal of Natural Gas Science and Engineering,2020,81:103466. DOI: 10.1016/j.jngse.2020.103466
|
[12] |
李树刚,白杨,林海飞,等. CH4,CO2和N2多组分气体在煤分子中吸附热力学特性的分子模拟[J]. 煤炭学报,2018,43(9):2476−2483. LI Shugang,BAI Yang,LIN Haifei,et al. Molecular simulation of adsorption thermodynamics of multicomponent gas in coal[J]. Journal of China Coal Society,2018,43(9):2476−2483.
|
[13] |
LONG Hang,LIN Haifei,YAN Min,et al. Molecular simulation of the competitive adsorption characteristics of CH4,CO2,N2,and multicomponent gases in coal[J]. Powder Technology,2021,385:348−356. DOI: 10.1016/j.powtec.2021.03.007
|
[14] |
刘冰,张松航,唐书恒,等. 无越流补给含水层对煤层气排采影响的数值模拟[J]. 煤田地质与勘探,2021,49(2):43−53. LIU Bing,ZHANG Songhang,TANG Shuheng,et al. Numerical simulation of the influence of no-flow recharge aquifer on CBM drainage[J]. Coal Geology & Exploration,2021,49(2):43−53. DOI: 10.3969/j.issn.1001-1986.2021.02.006
|
[15] |
孟艳军,汤达祯,许浩,等. 煤层气解吸阶段划分方法及其意义[J]. 石油勘探与开发,2014,41(5):612−617. MENG Yanjun,TANG Dazhen,XU Hao,et al. Division of coalbed methane desorption stages and its significance[J]. Petroleum Exploration and Development,2014,41(5):612−617. DOI: 10.11698/PED.2014.05.14
|
[16] |
胡友林,乌效鸣. 煤层气储层水锁损害机理及防水锁剂的研究[J]. 煤炭学报,2014,39(6):1107−1111. HU Youlin,WU Xiaoming. Research on coalbed methane reservoir water blocking damage mechanism and anti-water blocking[J]. Journal of China Coal Society,2014,39(6):1107−1111.
|
[17] |
SHANG Xiaopeng,ZHANG Xuan,NGUYEN T,et al. Direct numerical simulation of evaporating droplets based on a sharp-interface algebraic VOF approach[J]. International Journal of Heat and Mass Transfer,2022,184:122282. DOI: 10.1016/j.ijheatmasstransfer.2021.122282
|
[18] |
宋帅,周劲辉,范德元,等. 高阶煤压裂液伤害机理研究[J]. 煤炭技术,2018,37(5):161−163. SONG Shuai,ZHOU Jinhui,FAN Deyuan,et al. Study on damage mechanism of fracturing fluid in high rank coal[J]. Coal Technology,2018,37(5):161−163.
|
[19] |
白建平,武杰. 压裂液对煤储层伤害实验及应用:以沁水盆地西山区块为例[J]. 煤田地质与勘探,2016,44(4):77−80. BAI Jianping,WU Jie. Experiment and application of fracturing fluid damage to coal reservoir:A case of Xishan block in Qinshui Basin[J]. Coal Geology & Exploration,2016,44(4):77−80. DOI: 10.3969/j.issn.1001-1986.2016.04.015
|
[20] |
MENG Ya,LI Zhiping,LAI Fengpeng. Influence of effective stress on gas slippage effect of different rank coals[J]. Fuel,2021,285:119207. DOI: 10.1016/j.fuel.2020.119207
|
[21] |
YANG Yun,LIU Shimin. Estimation and modeling of pressure-dependent gas diffusion coefficient for coal:A fractal theory-based approach[J]. Fuel,2019,253:588−606. DOI: 10.1016/j.fuel.2019.05.009
|
[1] | WANG Beifang, LIANG Bing, ZHANG Jing, CHI Haibo, HUANG Pujiang. Comprehensive outburst prevention technology of outburst-prone coal seam uncovered by crossdrift in Hongshan coal mine[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 86-93. DOI: 10.3969/j.issn.1001-1986.2019.05.012 |
[2] | LI Xinjie, JIA Jinzhang, Li Bing. Prediction method of coal and gas outburst based on SAGA-FCM[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(2): 14-18. DOI: 10.3969/j.issn.1001-1986.2016.02.003 |
[3] | WEI Chunfu, LI Huamin, YUAN Ruifu. Gas pressure effect in the process of coal and gas outburst[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(6): 24-28. DOI: 10.3969/j.issn.1001-1986.2014.06.005 |
[4] | XU Gang, LI Shugang, MA Ruifeng. Analysis on coal and gas outburst mechanism of beding shear zone[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(4): 16-20. DOI: 10.3969/j.issn.1001-1986.2014.04.004 |
[5] | HU Wei-yue, LI Jing, WANG Shou-quan. The flowing and outburst mechanism of gas in coal-based pore and fractured medium[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(4): 6-8,14. DOI: 10.3969/j.issn.1001-1986.2009.04.002 |
[6] | LIU Jin-hai, FENG Tao, XIE Dong-hai, LIU Hui. Prediction method of coal and gas outburst by distance discriminant analysis[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(1): 26-28,32. |
[7] | ZHANG Xu-liang, PENG Su-ping, ZHANG Zi-xu, YUAN Chong-fu. Mathematical geology model of coal and gas outburst[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(1): 14-17. |
[8] | ZHANG Xu-liang, PENG Su-ping, ZHANG Zi-xu, YUAN Chong-fu. Study of sensitive geology factors of coal and gas outburst[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(2): 7-10. |
[9] | He Jun, Yuan Dongsheng, Liu Mingju, Zhang Zimin. FRACTAL PREDICTION RESEARCH ON COAL AND GAS OUTBURST ZONES[J]. COAL GEOLOGY & EXPLORATION, 2000, 28(3): 31-33. |
[10] | Shi Xianxin, Cai Shuanrong, Feng Hong, Li Hua. THE PREDICTION OF COAL AND GAS OUTBURST USING THE ACOUSTIC EMISSION TECHNIQUE[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(3): 60-65. |
1. |
张小波,郭宏,申宝柱. 煤矿采煤沉陷区模型分析及土地复垦技术研究. 山东煤炭科技. 2025(02): 170-174 .
![]() | |
2. |
郭马磊. 露天煤矿土地复垦与生态修复技术的思考研究. 内蒙古煤炭经济. 2025(03): 165-167 .
![]() | |
3. |
贾媛. 准格尔矿区植被覆盖度演变趋势及驱动力分析. 煤质技术. 2024(05): 50-58 .
![]() | |
4. |
焦晓亮,李明超,毕银丽,田野. 露天矿排土场不同植被恢复时间对林下植物群落及土壤性状影响. 矿业研究与开发. 2024(11): 172-183 .
![]() | |
5. |
李聪聪,王佟,赵欣,王伟超,梁振新. 高原高寒矿区生态修复中的煤炭资源保护技术. 煤田地质与勘探. 2024(11): 1-11 .
![]() | |
6. |
何继,崔瑞豪,李虎民,王磊,马飞,王培俊. 基于无人机的人工植被分布识别与重建效果评价. 中国煤炭. 2024(11): 142-152 .
![]() | |
7. |
张洪. 煤炭露天开采用地模式改革探讨. 煤炭工程. 2023(01): 23-26 .
![]() | |
8. |
官炎俊,王娟,周伟,曹银贵,白中科. 露天矿区土地复垦适应性管理:内涵解析与框架构建. 中国土地科学. 2023(02): 102-112 .
![]() | |
9. |
杨璐璐,王立徽. 基于“两山”理论的“矿农协同”生态整治与矿区农民农村共同富裕. 理论与现代化. 2023(04): 71-81 .
![]() | |
10. |
辛建宝,周国驰. 胜利西三矿全生命周期生态治理规划探索. 露天采矿技术. 2023(04): 70-73+77 .
![]() | |
11. |
侯金武,余洋. 试论科学推进矿山生态修复. 矿业安全与环保. 2023(06): 1-6+15 .
![]() |