Citation: | HUANG Zhongzheng,JIANG Guoqing,WANG Jun,et al. Study of advance elaborate detection with transient electromagnetic method for mine with closed poor boreholes[J]. Coal Geology & Exploration,2022,50(8):142−148. DOI: 10.12363/issn.1001-1986.21.12.0841 |
Closed poor boreholes connect aquifers at some degree to form well concealed water diversion channels, which poses a water hazard threat on either tunneling or working bench recovery. In order to discuss the effectiveness of using the transient electromagnetic method in the advance detection of closed poor boreholes for the mine, the 3D geologic-geophysical model of the closed poor boreholes in front of the tunneling working bench was established based on the full-space transient electromagnetic theory to simulate and study the response characteristics of the full-space transient electromagnetic field in the influence area model of closed poor boreholes. As indicated by the numerical simulation results, the enhanced amplitude and obvious anomaly characteristics of the aquifer body near closed poor boreholes were shown in the induced electromotive force (EMF) multi-channel diagram. As indicated by the detection results, in combination with the study about the application in the advance detection work of closed poor boreholes in front of the tunneling working bench for the I0104108 working bench haulage way in Shuangma Coal Mine, Ningxia, there was local low resistivity at the coal seam roof near the borehole, indicating that the certain hydraulic conductivity of the borehole led to the enhanced relative local high water abundance of the coal seam roof. According to the study result, the local water abundance enhancement caused by the closed poor boreholes can lead to typical and recognizable transient electromagnetic field response. Adopting the transient electromagnetic method in the advance detection for the mine, in combination of elaborate processing and interpretation, the relative water abundance characteristics of the rock formation near the borehole can be effectively found out, and then the hydraulic conductivity of closed poor boreholes can be evaluated, providing basis for the governance of closed poor boreholes and guaranteeing the safe production of the mine.
[1] |
范立民. 煤矿隐蔽致灾因素与探查[M]. 北京: 煤炭工业出版社, 2014.
|
[2] |
彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报, 2020, 45(7): 2331–2345. DOI: 10.13225/j.cnki.jccs.DZ20.1089
PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society, 2020, 45(7): 2331–2345. DOI: 10.13225/j.cnki.jccs.DZ20.1089
|
[3] |
阮百尧, 邓小康, 刘海飞, 等. 坑道直流电阻率超前聚焦探测新方法研究[J]. 地球物理学报, 2009, 52(1): 289–296.
RUAN Baiyao, DENG Xiaokang, LIU Haifei, et al. Research on a new method of advanced focus detection with DC resistivity in tunnel[J]. Chinese Journal of Geophysics, 2009, 52(1): 289–296.
|
[4] |
韩德品, 李丹, 程久龙, 等. 超前探测灾害性含导水地质构造的直流电法[J]. 煤炭学报, 2010, 35(4): 635–639. DOI: 10.13225/j.cnki.jccs.2010.04.002
HAN Depin, LI Dan, CHENG Jiulong, et al. DC method of advanced detecting disastrous water–conducting or water–bearing geological structures along same layer[J]. Journal of China Coal Society, 2010, 35(4): 635–639. DOI: 10.13225/j.cnki.jccs.2010.04.002
|
[5] |
高卫富, 施龙青, 于小鸽, 等. 矿井三维电法对封闭不良钻孔的探测[J]. 湖南科技大学学报(自然科学版), 2017, 32(3): 6–9. DOI: 10.13582/j.cnki.1672-9102.2017.03.002
GAO Weifu, SHI Longqing, YU Xiaoge, et al. Study on detection of sealed bad drilling using mine 3D DC method[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2017, 32(3): 6–9. DOI: 10.13582/j.cnki.1672-9102.2017.03.002
|
[6] |
李飞, 张永超, 连会青, 等. 掘进工作面直流电法超前探测技术问题探讨[J]. 煤炭科学技术, 2020, 48(12): 250–256. DOI: 10.13199/j.cnki.cst.2020.12.032
LI Fei, ZHANG Yongchao, LIAN Huiqing, et al. Discussion on problems of direct current advance detection method in roadway driving face[J]. Coal Science and Technology, 2020, 48(12): 250–256. DOI: 10.13199/j.cnki.cst.2020.12.032
|
[7] |
程久龙, 李飞, 彭苏萍, 等. 矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报, 2014, 39(8): 1742–1750. DOI: 10.13225/j.cnki.jccs.2014.9007
CHENG Jiulong, LI Fei, PENG Suping, et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society, 2014, 39(8): 1742–1750. DOI: 10.13225/j.cnki.jccs.2014.9007
|
[8] |
于景邨, 刘志新, 刘树才, 等. 深部采场突水构造矿井瞬变电磁法探查理论及应用[J]. 煤炭学报, 2007, 32(8): 818–821. DOI: 10.3321/j.issn:0253-9993.2007.08.008
YU Jingcun, LIU Zhixin, LIU Shucai, et al. Theoretical analysis of mine transient electromagnetic method and its application in detecting water burst structures in deep coal stope[J]. Journal of China Coal Society, 2007, 32(8): 818–821. DOI: 10.3321/j.issn:0253-9993.2007.08.008
|
[9] |
程久龙, 陈丁, 薛国强, 等. 矿井瞬变电磁法超前探测合成孔径成像研究[J]. 地球物理学报, 2016, 59(2): 731–738. DOI: 10.6038/cjg20160230
CHENG Jiulong, CHEN Ding, XUE Guoqiang, et al. Synthetic aperture imaging in advanced detection of roadway using the mine transient electromagnetic method[J]. Chinese Journal of Geophysics, 2016, 59(2): 731–738. DOI: 10.6038/cjg20160230
|
[10] |
刘志新, 于景邨, 郭栋. 矿井瞬变电磁法在水文钻孔探测中的应用[J]. 物探与化探, 2006, 30(1): 59–61.
LIU Zhixin, YU Jingcun, GUO Dong. The application of the mining transient electromagnetic method to the exploration of hydrological borehole[J]. Geophysical & Geochemical Exploration, 2006, 30(1): 59–61.
|
[11] |
郭纯, 刘白宙, 白登海. 地下全空间瞬变电磁技术在煤矿巷道掘进头的连续跟踪超前探测[J]. 地震地质, 2006, 28(3): 456–462. DOI: 10.3969/j.issn.0253-4967.2006.03.014
GUO Chun, LIU Baizhou, BAI Denghai. Prediction of water disasters ahead of tunneling in coal mine using continuous detection by UW TEM[J]. Seismology and Geology, 2006, 28(3): 456–462. DOI: 10.3969/j.issn.0253-4967.2006.03.014
|
[12] |
刘志新, 于景邨, 张华, 等. 小波变换在矿井瞬变电磁法中的应用[J]. 煤田地质与勘探, 2007, 35(4): 70–71. DOI: 10.3969/j.issn.1001-1986.2007.04.019
LIU Zhixin, YU Jingcun, ZHANG Hua, et al. Application of wavelet transfer in coal mine transient electromagnetic method[J]. Coal Geology & Exploration, 2007, 35(4): 70–71. DOI: 10.3969/j.issn.1001-1986.2007.04.019
|
[13] |
张军. 矿井超浅层高分辨率瞬变电磁探测技术[J]. 煤田地质与勘探, 2020, 48(4): 219–225. DOI: 10.3969/j.issn.1001-1986.2020.04.030
ZHANG Jun. The high–resolution transient electromagnetic detection technology for ultra–shallow layer in coal mine[J]. Coal Geology & Exploration, 2020, 48(4): 219–225. DOI: 10.3969/j.issn.1001-1986.2020.04.030
|
[14] |
王清虎, 吴江. 煤矿井下封闭不良勘探钻孔综合探查方法与实践[J]. 煤炭科学技术, 2017, 45(8): 228–232. DOI: 10.13199/j.cnki.cst.2017.08.039
WANG Qinghu, WU Jiang. Combined exploration method of poor sealing exploration borehole in underground coal mine and its practices[J]. Coal Science and Technology, 2017, 45(8): 228–232. DOI: 10.13199/j.cnki.cst.2017.08.039
|
[15] |
姬亚东. 基于综合分析法的疑似封闭不良钻孔探查[J]. 煤矿安全, 2021, 52(8): 83–88.
JI Yadong. Exploration of suspected poorly sealed borehole based on comprehensive analysis method[J]. Safety in Coal Mines, 2021, 52(8): 83–88.
|
[16] |
米萨克 N. 纳比吉安. 勘查地球物理电磁法 第一卷: 理论[M]. 赵经祥, 王艳君, 译. 北京: 地质出版社, 1992.
|
[17] |
许建荣, 李爱勇, 杨生. TEM中心回线法瞬变磁场求取和全区视电阻率计算[J]. 地质与勘探, 2008, 44(6): 62–68.
XU Jianrong, LI Aiyong, YANG Sheng. Calculation of transient magnetic field and all time apparent resistivity based on central TEM loops method[J]. Geology and Prospecting, 2008, 44(6): 62–68.
|
[18] |
姜国庆, 程久龙, 孙晓云, 等. 全空间瞬变电磁全区视电阻率优化二分搜索算法[J]. 煤炭学报, 2014, 39(12): 2482–2488 DOI: 10.13225/j.cnki.jccs.2014.0477
JIANG Guoqing, CHENG Jiulong, SUN Xiaoyun, et al. Optimized binary search algorithm of full space transient electromagnetic method all–time apparent resistivity[J]. Journal of China Coal Society, 2014, 39(12): 2482–2488. DOI: 10.13225/j.cnki.jccs.2014.0477
|
[19] |
CHENG Jiulong,XUE Junjie,ZHOU Jin,et al. 2.5-D inversion of advanced detection transient electromagnetic method in full space[J]. IEEE Access,2020(8):4972−4979.
|
[20] |
程久龙, 黄少华, 温来福, 等. 矿井全空间三维主轴各向异性介质瞬变电磁场响应特征研究[J]. 煤炭学报, 2019, 44(1): 278–286. DOI: 10.13225/j.cnki.jccs.2018.1667
CHENG Jiulong, HUANG Shaohua, WEN Laifu, et al. Response characteristics of three-dimensinal axial anisotropic media for transient electromagnetic method in underground whole-space[J]. Journal of China Coal Society, 2019, 44(1): 278–286. DOI: 10.13225/j.cnki.jccs.2018.1667
|
[1] | WANG Hui, FAN Yuhai, CUI Sheng, HE Xiaolong, JIN Moushun, PAN Chunjuan, LIANG Min, ZHANG Shaopeng. Analysis of tectonic deformation features and tectonic origin in the south of Hancheng mining area[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(2): 1-7,13. DOI: 10.3969/j.issn.1001-1986.2017.02.001 |
[2] | SHI Xiuchang, JU Yuanjiang, MENG Zhaoping. Characteristics of in-situ stress field in Xinji coal mine[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(6): 68-72. DOI: 10.3969/j.issn.1001-1986.2014.06.014 |
[3] | SHI Xiuchang, JU Yuanjiang, MENG Zhaoping. Characteristics of in-situ stress field in Xinji coal mine[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(6): 64-67. DOI: 10.3969/j.issn.1001-1986.2014.06.013 |
[4] | WANG Ying, ZHANG Qinglong, ZHU Wenbin, WANG Liangshu, XIE Guoai, ZOU Xu. Mesozoic structural deformation and tectonic stress field characteristics in the north of Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(1): 8-12,18. DOI: 10.3969/j.issn.1001-1986.2014.01.002 |
[5] | WANG Lizhi, JIA Lilong, LIU Changqing. Analysis of the characters of the paleotectonic stress field and its inversion method[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(5): 17-23. DOI: 10.3969/j.issn.1001-1986.2013.05.004 |
[6] | CHENG Jun, ZHANG Lihong, WU Guodai, LIU Jingqing, LIU Zixuan. Relationship between tectonic stress field and coal/gas outburst[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(4): 1-4,11. DOI: 10.3969/j.issn.1001-1986.2012.04.001 |
[7] | HAN Jun, ZHANG Hong-wei. Characteristic of in-situ stress field in Huainan mining area[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(1): 17-21. |
[8] | KONG Fan-shun, SUN Ru-hua, LI Wen-ping. Research and analysis of in-situ stress field on Pengzhuang mining field[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(4): 14-17. |
[9] | YUAN Zheng-rong. Research on mechanism of tectonic stress field controlling coal permeability[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(4): 23-25. |
[10] | YUAN Zheng-rong, XUE Xi-cheng, LONG Rong-sheng. FINITE ELEMENT ANALYSIS ON PALEOSTRESS FIELD EVOLUTION IN GAOAN MINE[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(5): 33-35. |
1. |
刘德旭,杨迎,黄宏旭,钟海旺. 新型电力系统大规模抽水蓄能调度运行与控制综述及展望. 中国电机工程学报. 2025(01): 80-98 .
![]() | |
2. |
王双明,宋世杰,魏江波,刘浪,牛瑞琳,李源红,谈庆钰,田雨. 陕北黄土覆盖区煤层上覆岩系层状结构对开采区土壤损伤效应研究. 煤炭学报. 2025(01): 23-42 .
![]() | |
3. |
李大成,朱天生,吴迪,马黎,项华伟. 基于滑动叠加组合的抽水蓄能电站洪水调节计算模型及应用. 中国农村水利水电. 2024(01): 244-250+256 .
![]() | |
4. |
叶润成,李茂斌,梁毅. 基于EOD模式的“矿山抽蓄+生态修复”开发前景思考. 能源与环保. 2024(03): 40-46 .
![]() | |
5. |
修雅馨,刘钦节,付强,杨卿干,包兴芮,邓卓越. 废弃矿井地下空间物理储能方式对比与优选. 绿色矿冶. 2024(02): 6-13 .
![]() | |
6. |
文志杰,姜鹏飞,宋振骐,李利平,蒋宇静,梁桐凯. 关闭/废弃矿井抽水蓄能开发利用现状与进展. 煤炭学报. 2024(03): 1358-1374 .
![]() | |
7. |
王方田,张辰凯,张村,贾胜. “双碳”目标驱动下煤系伴生资源协同开发技术框架. 科技导报. 2024(07): 40-55 .
![]() | |
8. |
孙中博,赵毅鑫,任建东. 废弃矿井地下空间再利用根源因素识别及评价模型构建. 中国矿业大学学报. 2024(03): 585-599+612 .
![]() | |
9. |
刘飞跃,陈澫赟,杨科,段敏克,刘钦节,杨凌越. 安徽省关闭煤矿资源调查及其综合利用研究. 煤田地质与勘探. 2024(06): 1-11 .
![]() | |
10. |
宋世杰,张家杰,杨帅,刘志坚,江宁,陈平,刘汉斌,魏江波,刘露,陈宝灯,李源红. 黄河上中游采煤沉陷区水土流失效应的探索与思考. 绿色矿山. 2024(02): 169-182 .
![]() | |
11. |
霍超,王蕾,谢志清,潘海洋,方惠明,赵岳,王丹丹,王丹凤. 新时期我国煤矿地下空间综合利用现状及展望. 地质论评. 2024(04): 1455-1468 .
![]() | |
12. |
文志杰,姜鹏飞,宋振骐,蒋宇静. 废弃矿井抽水蓄能面临的关键问题与对策思考. 山东科技大学学报(自然科学版). 2023(01): 28-37 .
![]() | |
13. |
顾清华,李学现,卢才武,阮顺领,江松. “双碳”背景下露天矿智能化建设新模式的技术路径. 金属矿山. 2023(05): 1-13 .
![]() | |
14. |
王双明,申艳军,宋世杰,刘浪,顾霖骏,魏江波. “双碳”目标下煤炭能源地位变化与绿色低碳开发. 煤炭学报. 2023(07): 2599-2612 .
![]() | |
15. |
于凯,黄馨阅. 基于知识图谱的抽水蓄能专利信息挖掘与可视化研究. 科学技术与工程. 2023(26): 11364-11374 .
![]() | |
16. |
高学平,袁泽雨. 抽水蓄能电站地下水库建设进展及关键水力学问题. 水利学报. 2023(09): 1058-1069 .
![]() | |
17. |
刘具,秦坤. 我国煤炭绿色开采技术进展. 矿业安全与环保. 2023(06): 7-15 .
![]() |