Fracture feature recognition of sandstone after high temperature based on RA/AF
-
摘要: 开展岩石高温损伤破裂信息识别研究对地热开发和煤炭地下气化等具有重要的指导意义。通过不同高温处理后砂岩在破坏过程中声发射参数RA(上升时间/振幅)和AF(平均频率)值变化,研究高温后砂岩内部不同类型裂纹的发展演化规律。结果表明:砂岩在整个加载过程中以拉张裂纹为主,当加载应力超过峰值应力的80%后,剪切裂纹所占比例迅速增大,可将此作为砂岩发生破坏的前兆;当加热温度超过600℃时,剪切裂纹所占比例上升,超过800℃,剪切裂纹所占比例迅速下降,600℃和800℃可作为砂岩损伤突变的阈值温度;高温后位错塞积现象增多,砂岩塑性特征增强,拉张裂纹所占比例增大。研究成果将对高温作用后岩石破裂失稳前兆信息的识别提供重要的理论基础。Abstract: It is of great significance to carry out the research on rock high temperature damage information identification for geothermal development and underground coal gasification. Based on the changes of acoustic emission parameters RA and AF in the failure process of sandstone after different high temperature treatments, the development and evolution law of different types of cracks in sandstone after high temperature treatment are studied. The results show that tensile cracks are dominant in the whole loading process of sandstone. When the loading stress exceeds 80% of the peak stress, the proportion of shear cracks increases rapidly, which can be regarded as the precursor of sandstone failure. When the heating temperature exceeds 600℃, the proportion of shear cracks increases. When temperature exceeds 800℃, the proportion of shear cracks decreases rapidly. Therefore, 600℃ and 800℃ can be regarded as the threshold temperature of sandstone damage mutation. After high temperature treatment, the dislocation pileup phenomenon increases, the plastic characteristics of sandstone strengthen, and the proportion of tensile cracks increases. The research results will provide an important theoretical basis for the identification of precursor information of rock fracture and instability after high temperature treatent.
-
Keywords:
- high temperature /
- acoustic emission /
- RA value /
- AF value /
- dislocation pileup
-
-
[1] 韩磊,秦勇,王作棠. 煤炭地下气化炉选址的地质影响因素[J]. 煤田地质与勘探,2019,47(2):44-50. HAN Lei,QIN Yong,WANG Zuotang. Geological consideration for site selection of underground coal gasifier[J]. Coal Geology & Exploration,2019,47(2):44-50.
[2] 郤保平,吴阳春,王帅,等. 青海共和盆地花岗岩高温热损伤力学特性试验研究[J]. 岩石力学与工程学报,2020,39(1):69-83. XI Baoping,WU Yangchun,WANG Shuai,et al. Experimental study on mechanical properties of granite taken from Gonghe basin,Qinghai Province after high temperature thermal damage[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(1):69-83.
[3] 杨明军,王玉丹,文国军,等. 激光辐照煤岩的热效应数值模拟分析[J]. 煤田地质与勘探,2018,46(6):217-222. YANG Mingjun,WANG Yudan,WEN Guojun,et al. Numerical simulation of thermal effects of laser irradiation on coal and rock[J]. Coal Geology & Exploration,2018,46(6):217-222.
[4] TIAN Wenling,YANG Shengqi,ELSWORTH D,et al. Permeability evolution and crack characteristics in granite under treatment at high temperature[J]. International Journal of Rock Mechanics and Mining Sciences,2020,134:104461.
[5] ZHANG Lianying,MAO Xianbiao,LI Ming,et al. Brittle-Ductile transition of mudstone in coal measure rock strata under high temperature[J]. International Journal of Geomechanics,2020,20(1):04019149.
[6] 孙强,张卫强,薛雷,等. 砂岩损伤破坏的声发射准平静期特征分析[J]. 采矿与安全工程学报,2013,30(2):237-242. SUN Qiang,ZHANG Weiqiang,XUE Lei,et al. Acoustic emission characteristics in quasi-quiet stage of damage and fracture of sandstone[J]. Journal of Mining and Safety Engineering,2013,30(2):237-242.
[7] ZHANG Yuliang,SUN Qiang,CAO Liwen,et al. Pore,mechanics and acoustic emission characteristics of limestone under the influence of temperature[J]. Applied Thermal Engineering,2017,123:1237-1244.
[8] 苏承东,宋常胜,苏发强. 高温作用后坚硬煤样单轴压缩过程中的变形强度与声发射特征[J]. 煤炭学报,2020,45(2):613-625. SU Chengdong,SONG Changsheng,SU Faqiang. Deformation intensity and acoustic emission characteristics of hard coal sample under uniaxial compression after high temperature[J]. Journal of China Coal Society,2020,45(2):613-625.
[9] GE Zhenlong,SUN Qiang. Acoustic emission(AE) characteristics of granite after heating and cooling cycles[J]. Engineering Fracture Mechanics,2018,200:418-429.
[10] 史宏财. 高温预损伤下煤岩蠕变声发射及分形特征[J]. 煤田地质与勘探,2020,48(2):187-194. SHI Hongcai. Creep acoustic emission and fractal characteristics of coal rock under high temperature pre-damage[J]. Coal Geology & Exploration,2020,48(2):187-194.
[11] 顾义磊,王泽鹏,李清淼,等. 页岩声发射 RA 值及其分形特征的试验研究[J]. 重庆大学学报,2018,41(2):78-86. GU Yilei,WANG Zepeng,LI Qingmiao,et al. Laboratory study on RA value fractal feature of shale acoustic emission under conventional triaxial compression[J]. Journal of Chongqing University,2018,41(2):78-86.
[12] AGGELIS D G,MPALASKAS A C,MATIKAS T E. Investigation of different fracture modes in cement-based materials by acoustic emission[J]. Cement and Concrete Research,2013,48:1-8.
[13] 周逸飞,朱星,刘文德.基于声发射和高斯混合模型的灰岩破裂特征识别研究[J]. 水利水电技术,2019,50(11):131-140. ZHOU Yifei,ZHU Xing,LIU Wende. Identification of cracking characteristics of limestone under uniaxial compression condition using acoustic emission and GMM[J]. Water Resources and Hydropower Engineering,2019,50(11):131-140.
[14] FARHIDZADEH A,SALAMONE S,SINGLA P. A probabilistic approach for damage identification and crack mode classification in reinforced concrete structures[J]. Journal of Intelligent Material Systems and Structures,2013,24(14):1722-1735.
[15] KERSTEN J. Simultaneous feature selection and Gaussian mixture model estimation for supervised classification problems[J]. Pattern Recognition,2014,47(8):2582-2595.
[16] 邓琼伟,杨录胜,刘正和,等. 水平应力差对砂岩起裂破坏规律的声发射试验研究[J]. 矿业研究与开发,2018,38(12):72-76. DENG Qiongwei,YANG Lusheng,LIU Zhenghe,et al. Acoustic emission test study on the influence of horizontal stress difference on crack initiation of sandstone damage[J]. Mining Research and Development,2018,38(12):72-76.
[17] 李芷,贾长贵,杨春和,等. 页岩水力压裂水力裂缝与层理面扩展规律研究[J]. 岩石力学与工程学报,2015,34(1):12-20. LI Zhi,JIA Changgui,YANG Chunhe,et al. Propagation of hydraulic fissures and bedding planes in hydraulic fracturing of shale[J]. Chinese Journal of Rock Mechanics & Engineering,2015,34(1):12-20.
[18] DIEDERICHS M S. Manuel rocha medal recipient rock fracture and collapse under low confinement conditions[J]. Rock Mechanics & Rock Engineering,2003,36(5):339-381.
[19] 谢和平,陈至达. 岩石断裂的微观机理分析[J]. 煤炭学报,1989,2:57-67. XIE Heping,CHEN Zhida. Analysis of rock fracture micro-mechanism[J]. Journal of China Coal Society,1989,2:57-67.
[20] 谢其泰,郭俊志,王建力,等.单轴压缩下含倾斜单裂纹砂岩试件裂纹扩展量测研究[J].岩土力学,2011,32(10):2917-2921. XIE Qitai,GUO Junzhi,WANG Jianli,et al. A study of crack propagation measurement on sandstone with a single inclined flaw under uniaxial compression[J]. Rock and Soil Mechanics. 2011,32(10):2917-2921.
[21] 黄再兴. 低速冲击下裂纹成核的位错模型[J]. 南京航空航天大学学报,2012,44(5):657-662. HUANG Zaixing. Dislocation model for crack nucleating in metal subjected to low-velocity shocking[J]. Journal of Nanjing University of Aeronautics & Astronautics,2012,44(5):657-662.
[22] 王林均,张搏,钱志宽,等. 单轴压缩下两类脆性岩石声发射特征试验研究[J]. 工程地质学报,2019,27(4):699-705. WANG Linjun,ZHANG Bo,QIAN Zhikuan,et al. Experimental investigation of the acoustics emission characteristics of two types of brittle rocks under uniaxial compression[J]. Journal of Engineering Geology,2019,27(4):699-705.
[23] HARTLIEB P,TOIFL M,KUCHAR F,et al. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted commination[J]. Minerals Engineering,2016,91:34-41.
[24] SOMERTON W H,SELIM M A. Additional thermal data for porous rocks-thermal expansion and heat of reaction[J]. Society of Petroleum Engineers Journal,1961,4(4):249-253.
[25] 吴晓东. 岩石热开裂的实验研究[D]. 北京:中国科学院地质与地球物理研究所,2000. WU Xiaodong. Experimental study of rock thermal cracking[D]. Beijing:Institute of Geology and Geophysics of CAS,2000.
[26] 张蓉蓉. 水热耦合作用下深部岩石动态力学特性及本构模型研究[D]. 淮南:安徽理工大学,2019. ZHANG Rongrong. Study on dynamic mechanical properties and constitutive model of deep rock under hydrothermal coupling[D]. Huainan:Anhui University of Science and Technology,2019.
-
期刊类型引用(18)
1. 王博睿,张远航. 含隐伏断层底板原生缺陷致灾前兆研究. 煤炭技术. 2025(01): 216-220 . 百度学术
2. 王勤明,刘艳杰. 济阳煤矿底板突水危险性评价. 内蒙古煤炭经济. 2024(07): 58-60 . 百度学术
3. 左建平,吴根水. 深部底板水锤突水效应及递进–导升力学模型研究. 岩石力学与工程学报. 2024(08): 1852-1869 . 百度学术
4. 李远. 微震监测技术在煤矿顶底板裂隙发育探测规律的研究与应用. 煤炭科技. 2024(04): 225-230 . 百度学术
5. 王秉文,查文华,鲁海峰. 深部开采环境下底板隔水关键层深梁力学分析. 煤田地质与勘探. 2024(09): 80-91 . 本站查看
6. 陈光波,刘凤旭. 基于F-ANP模型的煤矿突水危险性评价. 矿业安全与环保. 2023(04): 129-134 . 百度学术
7. 鲁晶津,王云宏,崔伟雄,王冰纯,段建华,南汉晨,杨伟. 矿井水害音频电透视法监测水槽物理模拟试验研究. 煤炭科学技术. 2023(S1): 265-274 . 百度学术
8. 赵建忠,刘兴学,哈斯特尔·胡完. 煤层底板水对煤层开采的内在影响. 露天采矿技术. 2023(06): 11-14 . 百度学术
9. 李回贵,苏德国,孙维,许国胜,王军. 黔北煤田灰岩含水层对开采13号煤层的影响研究. 矿业安全与环保. 2023(06): 130-135 . 百度学术
10. 田凡凡,薛喜成. 煤层底板开采破坏深度研究综述. 能源与环保. 2022(01): 289-298 . 百度学术
11. 高耀全,高银贵,陆自清,孔皖军. 基于透明地质的唐家会煤矿奥灰水防治技术. 煤田地质与勘探. 2022(01): 101-108 . 本站查看
12. 郭国强. 综放开采特厚煤层采场底板破坏规律研究. 煤田地质与勘探. 2022(08): 107-115 . 本站查看
13. 薛岚华. 九里山矿底板突水监测预警技术的实践应用. 山东煤炭科技. 2021(02): 148-150 . 百度学术
14. 李鹏. 矿井综采工作面底板突水综合监测技术研究. 山西化工. 2021(01): 61-63 . 百度学术
15. 王皓,董书宁,乔伟,姬亚东,朱开鹏,周振方,宁殿艳,尚宏波. 矿井水害防控远程服务云平台构建与应用. 煤田地质与勘探. 2021(01): 208-216 . 本站查看
16. 高银贵,孔皖军,陈永春,薛贤明,郑刘根,常成林,姜春露,国伟,雷锋,王刚. 特厚煤层综放开采下工作面底板岩层破坏特征. 能源环境保护. 2021(06): 68-75 . 百度学术
17. 程胜,邹素. 网络并行电法仪在煤矿底板动态监测中的应用. 山东煤炭科技. 2021(12): 133-135 . 百度学术
18. 张爱华,陈建东. 微震监测地质异常对工作面回采影响分析. 煤炭与化工. 2021(12): 40-43 . 百度学术
其他类型引用(10)
计量
- 文章访问数: 170
- HTML全文浏览量: 10
- PDF下载量: 21
- 被引次数: 28