基于透明地质的唐家会煤矿奥灰水防治技术

高耀全, 高银贵, 陆自清, 孔皖军

高耀全,高银贵,陆自清,等.基于透明地质的唐家会煤矿奥灰水防治技术[J].煤田地质与勘探,2022,50(1):101−108. DOI: 10.12363/issn.1001-1986.21.11.0619
引用本文: 高耀全,高银贵,陆自清,等.基于透明地质的唐家会煤矿奥灰水防治技术[J].煤田地质与勘探,2022,50(1):101−108. DOI: 10.12363/issn.1001-1986.21.11.0619
GAO Yaoquan,GAO Yingui,LU Ziqing,et al.Prevention and control technology of Ordovician water in Tangjiahui Coal Mine based on transparent geology[J].Coal Geology & Exploration,2022,50(1):101−108. DOI: 10.12363/issn.1001-1986.21.11.0619
Citation: GAO Yaoquan,GAO Yingui,LU Ziqing,et al.Prevention and control technology of Ordovician water in Tangjiahui Coal Mine based on transparent geology[J].Coal Geology & Exploration,2022,50(1):101−108. DOI: 10.12363/issn.1001-1986.21.11.0619

 

基于透明地质的唐家会煤矿奥灰水防治技术

基金项目: 国家重点研发计划课题(2018YFC0807804);天地科技股份有限公司科技创新创业资金专项项目(2019-TD-ZD003,2020-TD-ZD002)
详细信息
    作者简介:

    高耀全,1990年生,男,陕西靖边人,硕士,助理研究员,从事矿井水害防治与地质保障技术研究工作. E-mail:gaoyaoquan@cctegxian.com

  • 中图分类号: TD745

Prevention and control technology of Ordovician water in Tangjiahui Coal Mine based on transparent geology

  • 摘要: 唐家会煤矿6号煤开采面临导水断层多、隐伏导水构造发育,奥陶纪灰岩(简称奥灰)水害防治难度大的问题。经过不断的探索和实践,唐家会煤矿引进多种先进技术,获取大量地质、水文地质数据,构建智能地质保障系统,形成“物探钻探探查、井上下联合注浆治理、孔中瞬变电磁精细探查、注浆效果孔间电阻率检测、煤层底板微震电法联合监测”的技术思路。通过融合各类静态数据、动态数据、实时数据,完成断层、破碎带、含水层、低阻异常区等充水因素的数字建模,使地质要素、钻探物探数据可视化、透明化,以此为依托,建立一套基于透明地质的奥灰水害全时空防治体系,实现带压开采条件下奥灰水害的精细探查、靶向治理、效果检测和回采监测,取得了良好的应用效果。
    Abstract: The problems of many water diversion faults and, concealed water diversion structure have led to the difficulty of water disaster prevention and control of Ordovician limestone in No.6 coal seam in Tangjiahui Coal Mine. After continuous exploration and practice, a variety of advanced technologies has been introduced to obtain a large number of geological and hydrogeological data, and construct an intelligent geological guarantee system. The technical ideas of “geophysical and drilling exploration, joint grouting treatment up-hole and down-hole, in-hole transient electromagnetic fine exploration, inter-hole resistivity detection of grouting effect, and joint monitoring of coal seam floor by micro-seismic and electromagnetic methods” are formed. Through the integration of all kinds of static data, dynamic data and real-time data, the digital modeling of water filling factors such as faults, broken zones, aquifers and low resistivity anomaly areas is founded, so as to make geological bodies and drilling and geophysical data visible and transparent. Then a whole time-space prevention and control system of Ordovician water disasters based on transparent geology is established, realizing the precise exploration, targeted treatment, effect detection and mining monitoring of Ordovician water disasters under the condition of mining under pressure. It has obtained satisfactory application results.
  • 图  1   全时空水害防治体系

    Fig.  1   Whole time-space prevention and control system for coal mine water hazard

    图  2   唐家会煤矿水文地质模型

    Fig.  2   Hydrogeological model of Tangjiahui Coal Mine

    图  3   2个工作面水文地质模型

    Fig.  3   Hydrogeological model of two working faces

    图  4   井下定向钻孔对工作面的探查治理

    Fig.  4   Underground directional drilling for working face exploration management

    图  5   Y6异常区模型俯视图

    Fig.  5   Top view of the Y6 anomaly model

    图  6   异常区地面治理工程平面布置

    Fig.  6   Plane layout of ground treatment works in abnormal areas

    图  7   异常区地面治理三维图

    Fig.  7   3D map of ground treatment in anomaly areas

    图  8   井下钻探探查

    Fig.  8   Underground drilling exploration

    图  9   井下精细探查三维图

    Fig.  9   3D map of underground fine exploration

    图  10   注浆效果检测

    Fig.  10   Grouting effect detection

    图  11   微震事件俯视图

    Fig.  11   Top view of the microseismic events

    图  12   微震事件与有效隔水层顶界面、奥灰顶面空间关系三维视图

    Fig.  12   3D view of spatial relationship among microseismic events and top layer of effective barrier and top surface of Ordovician limestone

    图  13   孔间电阻率监测

    Fig.  13   Borehole resistivity monitoring

    图  14   水害预测预报三维视图

    Fig.  14   3D view of the forecast for coal mine water hazard

    表  1   建模数据来源

    Table  1   Modeling data source

    资料来源处理方法模型
    钻孔资料、揭煤资料、高密度三维地震检查、验证,空间插值矿井地质模型、工作面模型
    岩心实验测试、测井曲线、抽水试验计算孔隙率、渗透率、渗透系数,
    剖分几何结构、制定约束条件
    水文地质模型
    三维地震数据体、槽波、音频电透视数据体、井巷揭露情况相互验证、校准断层、异常体模型
    水文、微震、电法监测数据空间图元叠加属性模型
    图纸、井巷、设备、工业广场空间定义、激光扫描、倾斜摄影场景模型
    下载: 导出CSV
  • [1] 樊娟. 黔北矿区青龙煤矿瞬变电磁法在探查岩溶含水层特征中的应用[J]. 煤矿安全,2021,52(7):72−78.

    FAN Juan. Application of transient electromagnetic method in exploring karst aquifer in Qinglong Coal Mine of Qianbei mining area[J]. Safety in Coal Mines,2021,52(7):72−78.

    [2] 王程,蒋齐平. 几种矿井电法的应用分析[J]. 中国煤炭地质,2017,29(3):76−80. DOI: 10.3969/j.issn.1674-1803.2017.03.16

    WANG Cheng,JIANG Qiping. Applied analysis for some mine electrical methods[J]. Coal Geology of China,2017,29(3):76−80. DOI: 10.3969/j.issn.1674-1803.2017.03.16

    [3] 杨焱钧,朱书阶,张孝文,等. 反射槽波探测技术中速度分析方法研究[J]. 煤田地质与勘探,2020,48(5):218−224. DOI: 10.3969/j.issn.1001-1986.2020.05.027

    YANG Yanjun,ZHU Shujie,ZHANG Xiaowen,et al. Velocity analysis method of reflected in−seam wave detection technique[J]. Coal Geology & Exploration,2020,48(5):218−224. DOI: 10.3969/j.issn.1001-1986.2020.05.027

    [4] 吴荣新,沈国庆,王汉卿,等. 综采工作面薄煤区无线电波多频率透视精细探测[J]. 煤田地质与勘探,2020,48(4):34−40. DOI: 10.3969/j.issn.1001-1986.2020.04.005

    WU Rongxin,SHEN Guoqing,WANG Hanqing,et al. Multi frequency perspective fine detection of radio wave for thin coal areas in fully mechanized coal face[J]. Coal Geology & Exploration,2020,48(4):34−40. DOI: 10.3969/j.issn.1001-1986.2020.04.005

    [5] 方刚. 带压区巷道掘进防治水钻探工程及水化学特征研究[J]. 煤炭工程,2018,50(2):59−62. DOI: 10.11799/ce201802016

    FANG Gang. Research on water prevention−control drilling engineering and hydrochemical characteristics of roadway driving under water pressure zone[J]. Coal Engineering,2018,50(2):59−62. DOI: 10.11799/ce201802016

    [6] 高耀全,方刚,闫兴达. 邢东煤矿深部区域奥灰水害探查治理技术[J]. 煤矿安全,2021,52(5):87−95.

    GAO Yaoquan,FANG Gang,YAN Xingda. Exploration and control technology of Ordovician limestone water hazard in deep area of Xingdong Coal Mine[J]. Safety in Coal Mines,2021,52(5):87−95.

    [7] 刘再斌. 基于三维定向孔的深部水害探查治理技术研究[J]. 煤炭工程,2018,50(8):53−56.

    LIU Zaibin. Study on deep mine water detection and governance techniques based on 3D directional drilling[J]. Coal Engineering,2018,50(8):53−56.

    [8] 高尚,孙晓宇,戴亚男,等. 煤层底板薄层灰岩地面定向孔注浆技术[J]. 建井技术,2021,42(4):39−44.

    GAO Shang,SUN Xiaoyu,DAI Ya’nan,et al. Grouting technology with ground directional drilling hole for thin limestone of seam floor[J]. Mine Construction Technology,2021,42(4):39−44.

    [9] 方俊. 基于井下定向钻孔的矿井地质异常体探查方法与应用[J]. 煤田地质与勘探,2021,49(4):269−277. DOI: 10.3969/j.issn.1001-1986.2021.04.032

    FANG Jun. Exploration method of underground geological anomaly and its application based on directional drilling[J]. Coal Geology & Exploration,2021,49(4):269−277. DOI: 10.3969/j.issn.1001-1986.2021.04.032

    [10] 张杰,姚宁平,李乔乔. 煤矿井下定向钻进技术在矿井地质勘探中的应用[J]. 煤矿安全,2013,44(10):131−134.

    ZHANG Jie,YAO Ningping,LI Qiaoqiao. Application of directional drilling technology in mines geological exploration[J]. Safety in Coal Mines,2013,44(10):131−134.

    [11] 张坤,方海,李邵东,等. 大埋深坚硬顶板厚煤层冲击地压微震监测及防治措施[J]. 中国矿业,2021,30(10):77−83.

    ZHANG Kun,FANG Hai,LI Shaodong,et al. Microseismic monitoring and prevention of working face rock burst in thick coal seam with hard roof and large buried depth[J]. China Mining Magazine,2021,30(10):77−83.

    [12]

    LI Zhen,XU Rongchao. An early–warning method for rock failure based on Hurst exponent in acoustic emission/microseismic activity monitoring[J]. Bulletin of Engineering Geology and the Environment,2021,80(10):7791−7805. DOI: 10.1007/s10064-021-02446-5

    [13] 刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628−2635.

    LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi−attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628−2635.

    [14] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285−2295.

    CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285−2295.

    [15] 马丽,段中会,张建军,等. 基于精细勘查的煤矿地质保障信息系统[J]. 中国煤炭地质,2020,32(9):70−73. DOI: 10.3969/j.issn.1674-1803.2020.09.11

    MA Li,DUAN Zhonghui,ZHANG Jianjun,et al. Coalmine geological security information system based on fine prospecting[J]. Coal Geology of China,2020,32(9):70−73. DOI: 10.3969/j.issn.1674-1803.2020.09.11

    [16] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277−2284.

    YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277−2284.

    [17] 朱树来. 矿井孔中瞬变电磁法探测技术研究与应用[J]. 地下空间与工程学报,2020,16(增刊1):236−240.

    ZHU Shulai. Research and application of drillhole transient electromagnetic detection technology[J]. Chinese Journal of Underground Space and Engineering,2020,16(Sup.1):236−240.

    [18] 靳德武,赵春虎,段建华,等. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报,2020,45(6):2256−2264.

    JIN Dewu,ZHAO Chunhu,DUAN Jianhua,et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society,2020,45(6):2256−2264.

    [19] 靳德武,乔伟,李鹏,等. 煤矿防治水智能化技术与装备研究现状及展望[J]. 煤炭科学技术,2019,47(3):10−17.

    JIN Dewu,QIAO Wei,LI Peng,et al. Research status and prospects on intelligent technology and equipment for mine water hazard prevention and control[J]. Coal Science and Technology,2019,47(3):10−17.

    [20] 陆自清. 基于边界元方法的次级断裂信息挖掘试验研究[J]. 煤田地质与勘探,2020,48(5):211−217. DOI: 10.3969/j.issn.1001-1986.2020.05.026

    LU Ziqing. Experiment of secondary fault information mining based on boundary element method[J]. Coal Geology & Exploration,2020,48(5):211−217. DOI: 10.3969/j.issn.1001-1986.2020.05.026

    [21] 陆自清. 基于卡尔曼滤波的动态地质模型导向方法[J]. 石油钻探技术,2021,49(1):113−120. DOI: 10.11911/syztjs.2020135

    LU Ziqing. Geosteering methods of a dynamic geological model based on Kalman filter[J]. Petroleum Drilling Techniques,2021,49(1):113−120. DOI: 10.11911/syztjs.2020135

    [22] 段建华. 煤层底板突水综合监测技术及其应用[J]. 煤田地质与勘探,2020,48(4):19−28. DOI: 10.3969/j.issn.1001-1986.2020.04.003

    DUAN Jianhua. Integrated monitoring technology of water inrush from coal seam floor and its application[J]. Coal Geology & Exploration,2020,48(4):19−28. DOI: 10.3969/j.issn.1001-1986.2020.04.003

    [23] 王鑫,吴际,刘超,等. 基于LSTM 循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报,2018,44(4):772−784.

    WANG Xin,WU Ji,LIU Chao,et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2018,44(4):772−784.

图(14)  /  表(1)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  19
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-01
  • 修回日期:  2022-01-04
  • 网络出版日期:  2022-01-26
  • 发布日期:  2022-01-31

目录

    /

    返回文章
    返回