Integrated monitoring technology of water inrush from coal seam floor and its application
-
摘要: 底板岩溶水害是华北型煤田较为普遍存在的问题,因其具有隐蔽性、突发性的特点,防治水工作面临巨大的问题和挑战,因此,底板突水监测预警已成为煤矿安全生产过程中的必要措施。底板水害的形成和发生都有一个从孕育、发展到发生的演变过程,在此过程的不同阶段,底板裂隙、岩层视电阻率等均会释放出对应的突水征兆,及时、准确、有效地采集这些信息,根据这些信息判别突水过程中的具体水文地质特征,为建立突水监测系统奠定了基础。根据突水三要素,在葛泉煤矿东井11916工作面,利用井-地-孔微震监测技术和视电阻率监测技术构建了底板突水综合监测系统,对引起突水的导水通道和水源2个要素进行实时监测。监测结果表明:正常情况下,11916工作面回采过程中底板破坏深度为20~25 m,但是在2019年9月14日工作面推进到中间巷道时,运料巷和中间巷来自顶板的压力对底板破坏的叠加作用,以及附近的陷落柱原有破裂,致使该位置底板破坏深度加大,达到30~35 m,底板本溪灰岩水通过导水通道进入运料巷,底板出水2 m3/h,从视电阻率监测结果中不难发现1个低阻异常体从底板下逐步向上发育的过程。利用井-地-孔微震监测技术和视电阻率监测技术构建的底板突水综合监测系统能够捕捉到底板突水征兆,对于预测重特大水害事故的发生具有重要意义和实用价值。Abstract: Karst water damage in floor is a common problem in North China type coalfield. Because of its characteristics of concealment and emergency, the prevention and control of water is faced with huge problems and challenges, monitoring and early warning technology of floor water inrush has become a necessary measure in the process of the safe production in coal mines. The formation and occurrence of floor water disaster have a process of evolution from conception, development to occurrence. In this process, the corresponding water inrush symptoms will be released in different stages of the floor crack and apparent resistivity of the rock layer. Timely, accurate and effective collection of these information and the specific hydrogeological characteristics in the process of water inrush can be distinguished according to these information. It laid a foundation for the establishment of water inrush monitoring system. According to the three factors of water inrush, an integrated monitoring system of water inrush from the floor is built in the working face 11916 of the east shaft of Gequan mine by using the technology of well ground hole microseismic monitoring and apparent resistivity monitoring. In order to provide a scientific basis for the prediction of water inrush from the floor, the real-time monitoring of the water channel and the water source are carried out. The monitoring results show that under normal conditions, the depth of floor damage in working face 11916 is 20-25 m. However,when the working face was pushed to the middle roadway on September 14, 2019, the superposition effect of the pressure of the haulage roadway and the middle roadway on the floor damage resulted in the increase of the floor damage depth at this location,reaching 30-35 m. The limestone water from Benxi bottom slab entered into the material conveying roadway through the water diversion channel, and the water output from the bottom slab of the working face is 2 m3/h. In addition, from the apparent resistivity monitoring results, we can see the development process of a low resistivity abnormal body from the bottom to the top. The research shows that the integrated monitoring system of water inrush from the bottom slab, constructed by using well ground hole microseismic monitoring technology and apparent resistivity monitoring technology, can capture the signs of water inrush from the bottom slab, It is of great significance and practical value to predict the occurrence of serious and serious water disasters.
-
-
[1] 张文泉,张广鹏,李伟,等. 煤层底板突水危险性的Fisher判别分析模型[J]. 煤炭学报,2013,38(10):1831-1836. ZHANG Wenquan,ZHANG Guangpeng,LI Wei,et al. A model of Fisher's discriminant analysis for evaluating water inrush risk from coal seam floor[J]. Journal of China Coal Society,2013,38(10):1831-1836.
[2] 靳德武. 我国煤矿水害防治技术新进展及其方法论思考[J]. 煤炭科学技术,2017,45(5):141-147. JIN Dewu. New development of water disaster prevention and control technology in China coal mine and consideration on methodology[J]. Coal Science and Technology,2017,45(5):141-147.
[3] 彭苏萍,王金安. 承压水体上安全采煤[M]. 北京:煤炭工业出版社,2001:34-35. PENG Suping,WANG Jin'an. Safe mining on confined water[M]. Beijing:China Coal Industry Publishing House,2001:34-35.
[4] 张金才,张玉卓,刘天泉. 岩体渗流与煤层底板突水[M]. 北京:地质出版社,1997:48-51. ZHANG Jincai,ZHANG Yuzhuo,LIU Tianquan. Seepage of rock mass and water inrush from coal seam floor[M]. Beijing:Geological Publishing House,1997:48-51.
[5] 钱鸣高,缪协兴,许家林,等. 岩层控制的关键层理论[M]. 徐州:中国矿业大学出版社,2003:76-80. QIAN Minggao,LIAO Xiexing,XU Jialin,et al. Key stratum theory of strata control[M]. Xuzhou:China University of Mining and Technology Press,2003:76-80.
[6] 施龙青,韩进. 底板突水机理及预测预报[M]. 徐州:中国矿业大学出版社,2004:45-50. SHI Longqing,HAN Jin. Mechanism and prediction of floor water inrush[M]. Xuzhou:China University of Mining and Technology Press,2004:45-50.
[7] 原富珍,马克,庄端阳,等. 基于微震监测的董家河煤矿底板突水通道孕育机制[J]. 煤炭学报,2019,44(6):1846-1856. YUAN Fuzhen,MA Ke,ZHUANG Duanyang,et al. Preparation mechanism of water inrush channels in bottom floor of Dongjiahe coal mine based on microseismic monitoring[J]. Journal of China Coal Society,2019,44(6):1846-1856.
[8] 武强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795-805. WU Qiang. Progress,problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795-805.
[9] 杨天鸿,师文豪,李顺才,等. 破碎岩体非线性渗流突水机理研究现状及发展趋势[J]. 煤炭学报,2016,41(7):1598-1609. YANG Tianhong,SHI Wenhao,LI Shuncai,et al. State of the art and trends of water-inrush mechanism of nonlinear flow in fractured rock mass[J]. Journal of China Coal Society,2016,41(7):1598-1609.
[10] 虎维岳,赵春虎. 基于充水要素的矿井水害类型三线图划分方法[J]. 煤田地质与勘探,2019,47(5):1-8. HU Weiyue,ZHAO Chunhu. Trilinear chart classification method of mine water hazard type based on factors of water recharge[J]. Coal Geology & Exploration,2019,47(5):1-8.
[11] 刘盛东,刘静,戚俊,等. 矿井并行电法技术体系与新进展[J]. 煤炭学报,2019,44(8):2336-2345. LIU Shengdong,LIU Jing,QI Jun,et al. Applied technologies and new advances of parallel electrical method in mining geophysics[J]. Journal of China Coal Society,2019,44(8):2336-2345.
[12] 鲁晶津. 煤矿井下含/导水构造三维电阻率反演成像技术[J]. 煤炭学报,2016,41(3):687-695. LU Jingjin. 3D electrical resistivity inversion and imaging technology for coal mine water-containing/water-conductive structures[J]. Journal of China Coal Society,2016,41(3):687-695.
[13] 刘德民,尹尚先,连会青,等. 煤矿底板突水定量预警准则及预警系统研究[J]. 煤炭工程,2019,51(4):16-20. LIU Demin,YIN Shangxian,LIAN Huiqing,et al. Study on quantitative warning criteria and early warning system for water inrush from coal floor[J]. Coal Engineering,2019,51(4):16-20.
[14] 杨天鸿,唐春安,谭志宏,等. 岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J]. 岩石力学与工程学报,2007,26(2):268-277. YANG Tianhong,TANG Chun'an,TAN Zhihong,et al. State of the art of inrush models in rock mass failure and developing trend for prediction and forecast of groundwater inrush[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(2):268-277.
[15] 鲁晶津,王冰纯,颜羽. 矿井电法在煤层采动破坏和水害监测中的应用进展[J]. 煤炭科学技术,2019,47(3):18-26. LU Jingjin,WANG Bingchun,YAN Yu. Advances of mine electrical resistivity method applied in coal seam mining destruction and water inrush monitoring[J]. Coal Science and Technology,2019,47(3):18-26.
[16] 程建远,金丹,覃思. 煤矿地质保障中地球物理探测技术面临的挑战[J]. 煤炭科学技术,2013,41(9):112-116. CHENG Jianyuan,JIN Dan,QIN Si. Challenges faced by geophysical detection technology in mine geological guarantee system[J]. Coal Science and Technology,2013,41(9):112-116.
[17] 刘超,吴顺川,程爱平,等. 采动条件下底板潜在导水通道形成的微震监测与数值模拟[J]. 北京科技大学学报,2014,36(9):1129-1135. LIU Chao,WU Shunchuan,CHENG Aiping,et al. Microseis micmonitoring and numerical simulation of the formation of water inrush pathway caused by coal mining[J]. Journal of University of Science and Technology Beijing,2014,36(9):1129-1135.
[18] 徐智敏,孙亚军,巩思园,等. 高承压水上采煤底板突水通道形成的监测与数值模拟[J]. 岩土力学与工程学报,2012,31(8):1698-1704. XU Zhimin,SUN Yajun,GONG Siyuan,et al. Monitoring and numerical simulation of formation of water inrush pathwaycaused by coal mining above confined water with high pressure[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1698-1704.
[19] 张平松,翟恩发,程爱民,等. 深厚煤层开采底板变形特征的光纤监测研究[J]. 地下空间与工程学报,2019,15(4):1197-1211. ZHANG Pingsong,ZHAI Enfa,CHENG Aimin,et al. Optical fiber monitoring study on characteristics of deformation in floor of deep and thick coal seam during mining[J]. Chinese Journal of Underground Space and Engineering,2019,15(4):1197-1211.
[20] 李白英,沈光寒,荆自刚,等. 预防采掘工作面底板突水的理论与实践[J]. 煤矿安全,1988(5):47-48. LI Baiyin,SHEN Guanghan,JING Zigang,et al. Theory and practice of preventing water inrush from the floor of mining face[J]. Safety in Coal Mines,1988(5):47-48.
[21] 沈光寒,李白英,吴戈. 矿井特殊开采的理论与实践[M]. 北京:煤炭工业出版社,1992:56-72. SHEN Guanghan,LI Baiying,WU Ge. Theory and practice of special mining[M]. Beijing:China Coal Industry Publishing House,1992:56-72.
[22] 李白英. 预防矿井底板突水的"下三带"理论及其发展与应用[J]. 山东矿业学院学报(自然科学版),1999,18(4):11-18. LI Baiying. "Down Three Zones" in the prediction of the water inrush from coalbed floor aquifer-theory,development and application[J]. Journal of Shandong Institute of Mining and Technology(Natural Science),1999,18(4):11-18.
[23] 王经明. 承压水沿煤层底板递进导升机理的模拟与观测[J]. 岩土工程学报,1999,21(5):546-549. WANG Jingming. In-situ measurement and physical analogue on water inrush from coal floor induced by progressive intrusion of artesian water into protective aquiclude[J]. Chinese Journal of Geotechnical Engineering,1999,21(5):546-549.
[24] 王经明. 承压水沿煤层底板递进导升机理的物理方法研究[J]. 煤田地质与勘探,1999,27(6):40-43. WANG Jingming. Physical investigation on water inrush from coal floor induced by pressure water progressive intrusion up into protective aquiclude[J]. Coal Geology & Exploration,1999,27(6):40-43.
[25] 王经明. 承压水沿煤层底板递进导升的突水机理及其应用[D]. 北京:煤炭科学研究总院,2004:78-82. WANG Jingming. Water inrush mechanism and application of confined water advancing along coal seam floor[D]. Beijing:China Coal Research Institute,2004:78-82.
[26] 李楠,王恩元,GE Maochen. 微震监测技术及其在煤矿的应用现状与展望[J]. 煤炭学报,2017,42(增刊1):83-96. LI Nan,WANG Enyuan,GE Maochen. Microseismic monitoring technique and its applications at coal mines present status and future prospects[J]. Journal of China Coal Society,2017,42(Sup.1):83-96.
[27] 陈歌,孙亚军,徐智敏,等. 微震监测技术在矿井水害防治中的研究进展[J]. 金属矿山,2019(1):7-15. CHEN Ge,SUN Yajun,XU Zhimin,et al. Study progress for microseism monitoring technique on the predication and control in mine water disaster[J]. Metal Mine,2019(1):7-15.
[28] 姜福兴,叶根喜,王存文,等. 高精度微震监测技术在煤矿突水监测中的应用[J]. 岩石力学与工程学报,2008,27(9):1932-1938. JIANG Fuxing,YE Genxi,WANG Cunwen,et al. Application of high-precision microseismic monitoring technique to water inrush monitoring in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1932-1938.
[29] 程关文,王悦,马天辉,等. 煤矿顶板岩体微震分布规律研究及其在顶板分带中的应用:以董家河煤矿微震监测为例[J]. 岩石力学与工程学报,2017,36(增刊2):4036-4046. CHENG Guanwen,WANG Yue,MA Tianhui,et al. Research on the partitioning method of the overburden in coal mine based on microseismic monitoring[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(Sup.2):4036-4046.
[30] 高原,周蕙兰,郑斯华,等. 测定震源深度的意义的初步讨论[J]. 中国地震,1997,13(4),321-329. GAO Yuan,ZHOU Huilan,ZHENG Sihua,et al. Preliminary discussion on implication of determination on source depth of earthquake[J]. Earthquake Research in China,1997,13(4),321-329.
[31] MENDECKI A J. Seismic monitoring in mines[M]. London:Chapman and Hall Press,1997:67-80.
[32] 田玥,陈晓非. 地震定位研究综述[J]. 地球物理学进展,2002,17(1):147-155. TIAN Yue,CHEN Xiaofei. Review of seismic location study[J]. Progress in Geophysics,2002,17(1):147-155.
[33] 段建华,闫文超,南汉晨,等. 井-孔联合微震技术在工作面底板破坏深度监测中的应用[J]. 煤田地质与勘探,2020,48(1):208-213. DUAN Jianhua,YAN Wenchao,NAN Hanchen,et al. Application of mine-hole joint microseismic technology in monitoring the damage depth of working face floor[J]. Coal Geology & Exploration,2020,48(1):208-213.
[34] BRACEW F,ORANGE A S. Electrical resistivity changes in saturated rocks during fracture and frictional sliding[J]. Journal of Geophysical Research,1968,73(4):1433-1445.
[35] 候克昌. 形变-电阻率法探测煤层底板水导高[J]. 煤田地质与勘探,1991,19(6):46-49. HOU Kechang. The application of deformation-resistivitymethod to upilift height of the bottom water about the coalseam[J]. Coal Geology & Exploration,1991,19(6):46-49.
[36] 刘盛东,吴荣新,胡水根,等. 网络分布式并行电法勘探系统[C]. 中国地球物理年会论文集. 2006:251. LIU Shengdong,WU Rongxin,HU Shuigen,et al. Network distributed parallel electrical exploration system[C]. Proceedings of the annual geophysical conference of China,2006:251. [37] 李建楼,刘盛东,张平松,等. 并行网络电法在煤层覆岩破坏监测中的应用[J]. 煤田地质与勘探,2008,36(2):61-64. LI Jianlou,LIU Shengdong,ZHANG Pingsong,et al. Failure dynamic observation of upper covered stratum under mine using parallel network electricity method[J]. Coal Geology & Exploration,2008,36(2):61-64.
[38] LI S,LIU B,NIE L,et al. Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method:A review[J]. Journal of Rock Mechanics and Geotechnical Engineering,2015,7(4):469-478.
[39] 鲁晶津,李德山,王冰纯. 超大采高工作面顶板电阻率监测可行性试验[J]. 煤田地质与勘探,2019,47(增刊3):186- 194. LU Jingjin,LI Deshan,WANG Bingchun. Feasibility test of roof resistivity monitoring for super-high mining face[J]. Coal Geology & Exploration,2019,47(Sup.3):186-194. [40] 虎维岳,尹尚先. 采煤工作面底板突水灾害发生的采掘扰动力学机制[J]. 岩石力学与工程学报,2010,29(增刊1):3344-3349. HU Weiyue,YIN Shangxian. Dynamic mechanism of water inrush from floor of mining face[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(Sup.1):3344-3349.
-
期刊类型引用(18)
1. 王博睿,张远航. 含隐伏断层底板原生缺陷致灾前兆研究. 煤炭技术. 2025(01): 216-220 . 百度学术
2. 王勤明,刘艳杰. 济阳煤矿底板突水危险性评价. 内蒙古煤炭经济. 2024(07): 58-60 . 百度学术
3. 左建平,吴根水. 深部底板水锤突水效应及递进–导升力学模型研究. 岩石力学与工程学报. 2024(08): 1852-1869 . 百度学术
4. 李远. 微震监测技术在煤矿顶底板裂隙发育探测规律的研究与应用. 煤炭科技. 2024(04): 225-230 . 百度学术
5. 王秉文,查文华,鲁海峰. 深部开采环境下底板隔水关键层深梁力学分析. 煤田地质与勘探. 2024(09): 80-91 . 本站查看
6. 陈光波,刘凤旭. 基于F-ANP模型的煤矿突水危险性评价. 矿业安全与环保. 2023(04): 129-134 . 百度学术
7. 鲁晶津,王云宏,崔伟雄,王冰纯,段建华,南汉晨,杨伟. 矿井水害音频电透视法监测水槽物理模拟试验研究. 煤炭科学技术. 2023(S1): 265-274 . 百度学术
8. 赵建忠,刘兴学,哈斯特尔·胡完. 煤层底板水对煤层开采的内在影响. 露天采矿技术. 2023(06): 11-14 . 百度学术
9. 李回贵,苏德国,孙维,许国胜,王军. 黔北煤田灰岩含水层对开采13号煤层的影响研究. 矿业安全与环保. 2023(06): 130-135 . 百度学术
10. 田凡凡,薛喜成. 煤层底板开采破坏深度研究综述. 能源与环保. 2022(01): 289-298 . 百度学术
11. 高耀全,高银贵,陆自清,孔皖军. 基于透明地质的唐家会煤矿奥灰水防治技术. 煤田地质与勘探. 2022(01): 101-108 . 本站查看
12. 郭国强. 综放开采特厚煤层采场底板破坏规律研究. 煤田地质与勘探. 2022(08): 107-115 . 本站查看
13. 薛岚华. 九里山矿底板突水监测预警技术的实践应用. 山东煤炭科技. 2021(02): 148-150 . 百度学术
14. 李鹏. 矿井综采工作面底板突水综合监测技术研究. 山西化工. 2021(01): 61-63 . 百度学术
15. 王皓,董书宁,乔伟,姬亚东,朱开鹏,周振方,宁殿艳,尚宏波. 矿井水害防控远程服务云平台构建与应用. 煤田地质与勘探. 2021(01): 208-216 . 本站查看
16. 高银贵,孔皖军,陈永春,薛贤明,郑刘根,常成林,姜春露,国伟,雷锋,王刚. 特厚煤层综放开采下工作面底板岩层破坏特征. 能源环境保护. 2021(06): 68-75 . 百度学术
17. 程胜,邹素. 网络并行电法仪在煤矿底板动态监测中的应用. 山东煤炭科技. 2021(12): 133-135 . 百度学术
18. 张爱华,陈建东. 微震监测地质异常对工作面回采影响分析. 煤炭与化工. 2021(12): 40-43 . 百度学术
其他类型引用(10)
计量
- 文章访问数: 211
- HTML全文浏览量: 19
- PDF下载量: 46
- 被引次数: 28