C Coalbed methane reservoir model under mining conditions and its application
-
摘要: 煤矿区煤层气开发受煤矿采动影响,为实现煤矿采动条件下煤层气井产能数值模拟,抽象概化了采动条件下煤层气开发的地质模型,构建了采动条件下煤层气储层的数学模型,并通过对CBM-SIM软件二次开发,实现了采动条件下煤层气储层的数值模拟。在建模和数值解算软件开发中,基于采动离层量变化曲线公式构建了采动条件下储层渗透率变化曲线公式,利用采动井水位变化规律构建了储层漏失水量变化公式,利用时间卡机制解决了煤储层渗透率及漏失水量的动态求解和循环迭代过程中作为系数和边界条件的调用赋值,实现了渗透率随采动影响的动态变化、储层水漏失降压和储层产气的耦合解算。应用开发的软件对淮南矿区某矿采动条件下煤层气抽采井生产数据进行历史拟合和产量模拟应用,预测煤层气产量曲线与实际生产曲线基本一致,判定系数达到0.92。Abstract: In order to realize the numerical simulation of coalbed methane reservoir under mining conditions, the geological model of coalbed methane development under mining conditions is generalized, the mathematical model of coalbed methane reservoir under mining condition is constructed, through the secondary exploration of CBM-SIM software, the numerical simulation of coalbed methane reservoir under mining conditions is realized. In the process, the formula of reservoir permeability change curve under mining condition is established based on the formula of variation curve of strata separation, the variation formula of water loss in reservoir is established based on the variation law of water level. By the time card mechanism, the dynamic solution of permeability and leakage water quantity of coal reservoir is made, and the call assignment of coefficients and boundary conditions in the iteration process is solved. The coupling calculation of the dynamic change of permeability with mining influence, the reservoir water leakage and reservoir gas production is realized. By using the software development, the production data of coalbed methane extraction well under mining conditions in Huainan mining area are simulated by historical and yield prediction. The production curve is consistent in shape, and the coefficient of judgment is 0.92. Good simulation results have been achieved.
-
Keywords:
- mining condition /
- coalbed methane /
- reservoir /
- numerical simulation
-
-
[1] BUMB A C,MCKEE C R. Gas-well testing in the presence of desorption for coalbed methane and Devonian shale[J]. SPEFE, 1988,3(1):179-185.
[2] SMITH D M,WILLIAMS F L. Diffusional effects in the recovery of methane from coalbeds[J]. Society of Petroleum Engineers Journal,1984,24(10):529-535.
[3] RUCKENSTEIN E,VAIDYANATHAN A S,YOUNGQUIST G R. Sorption by solid withbidisperse pore structures[J]. Chemical Engineering Science,1971,26(9):1305-1318.
[4] PAUL G W,SAWYER W K,DEAN R H. Validation of 3D coalbed simulators[C]//SPE Annual Technical Conference and Exhibition,SPE 20733-MS. New Orleans,Louisiana:Society of Petroleum Engineers,1990.
[5] Advanced Resources International,Inc. COMET2 version 2.1 user's guide[M]. Washington,DC,USA:Advanced Resources International,Inc.,2000.
[6] 杨天鸿,徐涛,刘建新,等. 应力-损伤-渗流耦合模型及在深部煤层瓦斯卸压实践中的应用[J]. 岩石力学与工程学报, 2005,24(16):2900-2905. YANG Tianhong,XU Tao,LIU Jianxin,et al. Coupling model of stress-damage-flow and its application to the investigation of instantaneous seepage mechanism for gas during unloading in coal seam with depth[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2900-2905.
[7] 李树刚. 综放开采围岩活动影响下瓦斯运移规律及其控制[J]. 岩石力学与工程学报,2000,19(6):809-810. LI Shugang. Gas delivery feature and its control influenced by movement of the surrounding rock in fully-mechanized top coal caving[J]. Chinese Journal of Rock Mechanics and Engineering, 2000,19(6):809-810.
[8] 涂敏,付宝杰. 低渗透性煤层卸压瓦斯抽采机理研究[J]. 采矿与安全工程学报,2009,26(4):433-436. TU Min,FU Baojie. Extraction mechanism of relieved gas from low permeability seam[J]. Journal of Mining & Safety Engineering,2009,26(4):433-436.
[9] 尹光志,李铭辉,李生舟,等. 基于含瓦斯煤岩固气耦合模型的钻孔抽采瓦斯三维数值模拟[J]. 煤炭学报,2013,38(4):535-541. YIN Guangzhi,LI Minghui,LI Shengzhou,et al. 3D numerical simulation of gas drainage from boreholes based on solid-gas coupling model of coal containing gas[J]. Journal of Chinese Coal Society,2013,38(4):535-541.
[10] 谢和平,高峰,周宏伟,等. 煤与瓦斯共采中煤层增透率理论与模型研究[J]. 煤炭学报,2013,38(7):1101-1108. XIE Heping,GAO Feng,ZHOU Hongwei,et al. On theoretical and modeling approach to mining enhanced permeability for simultaneous exploitation of coal and gas[J]. Journal of China Coal Society,2013,38(7):1101-1108.
[11] 孙海涛,郑颖人,胡千庭,等. 地面钻井套管耦合变形作用机理[J]. 煤炭学报,2011,36(5):823-829. SUN Haitao,ZHENG Yingren,HU Qianting,et al. Surface borehole casing coupling deformation mechanism[J]. Journal of Chinese Coal Society,2011,36(5):823-829.
[12] 李日富,梁运培,张军. 地面钻孔抽采采空区瓦斯效率影响因素[J]. 煤炭学报,2009,34(7):942-946. LI Rifu,LIANG Yunpei,ZHANG Jun. Influencing factors to extraction efficiency of surface goaf hole[J]. Journal of Chinese Coal Society,2009,34(7):942-946.
[13] 胡千庭,梁运培,林府进. 采空区瓦斯地面钻孔抽采技术试验研究[J]. 中国煤层气,2006,3(2):3-6. HU Qianting,LIANG Yunpei,LIN Fujin. Test of drawing technology on surface borehole in coal mine goal[J]. China Coalbed Methane,2006,3(2):3-6.
[14] 张群. 煤层气储层数值模拟模型及应用的研究[D]. 西安:煤炭科学研究总院西安分院,2003. [15] 钱鸣高,缪协兴. 采场上覆岩结构形态与受力分析[J]. 岩石力学与工程学报,1995,14(2):97-106. QIAN Minggao,MIAO Xiexing. Theoretical analysis on the structural form and stability of overlying strata in longwall mining[J]. Chinese Journal of Rock Mechanics and Engineering, 1995,14(2):97-106.
[16] 袁亮. 低透高瓦斯煤层群安全开采关键技术研究[J]. 岩石力学与工程学报,2008,27(7):1370-1379. YUAN Liang. Key technique of safe mining in low permeability and methane-rich seam group[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(7):1370-1379.
[17] 钱鸣高,缪协兴,许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报,1996,21(3):225-230. QIAN Minggao,MIAO Xiexing,XU Jialin. Theoretical study of key stratum in ground control[J]. Journal of Chinese Coal Society,1996,21(3):225-230.
[18] 缪协兴,茅献彪,胡光伟,等. 岩石(煤)的碎胀与压实特性研究[J]. 实验力学,1997,12(3):394-399. MIAO Xiexing,MAO Xianbiao,HU Guangwei,et al. Research on broken expand and press solid characteristics of rocks and coals[J]. Journal of Experimental Mechanics,1997,12(3):394-399.
-
期刊类型引用(13)
1. 弓毅伟,陈杰华,唐欣薇. 砂土地层暗挖施工结合MJS工法应用研究. 施工技术(中英文). 2024(23): 36-41+46 . 百度学术
2. 姚志雄,夏华灿,黄敏,陈进,李健. 福州滨海软土MJS工法桩加固施工及环境效应. 地下空间与工程学报. 2023(03): 1019-1026+1037 . 百度学术
3. 姚志雄,夏华灿,吴波,郑国文. MJS工法桩在滨海地区软基加固工程中的应用. 人民长江. 2023(10): 141-149 . 百度学术
4. 刘欣,杨平,郑盛,王岩梓,陈潋,杨宁. MJS水泥土的试桩成桩效果. 林业工程学报. 2022(01): 169-176 . 百度学术
5. 陈潋. 水平MJS在地下通道中的施工应用. 科技与创新. 2022(09): 162-164 . 百度学术
6. 苗贺朝,褚振尧,黄选明,曹海东,姚恒,王海. 矿山砂卵石地层中截水帷幕长幅槽段稳定性研究. 煤田地质与勘探. 2022(07): 18-27 . 本站查看
7. 宋欢. MJS高压旋喷桩在基坑围护结构断口处的应用. 天津建设科技. 2021(01): 12-15 . 百度学术
8. 熊仲明,覃泽宏,蔡虹,汪肆卜. 富水砂层盾构始发MJS工法桩的应用及分析. 铁道工程学报. 2021(03): 8-12+64 . 百度学术
9. 冯国卫. RJP与三重管高压旋喷工艺在基坑加固工程中施工工艺对比分析. 城市道桥与防洪. 2021(08): 212-214+238+25 . 百度学术
10. 王鹏,李林. 动水含砂层大直径超深高压旋喷桩施工技术. 城市道桥与防洪. 2021(10): 150-152+19 . 百度学术
11. 罗帅训,赵建勃,贺雪峰,韦波锋. 高压旋喷多管喷头的研制. 探矿工程(岩土钻掘工程). 2020(07): 78-81+87 . 百度学术
12. 朱明诚,韩强,赵贵斌,刘玉柱. 卵砾石含水层高压旋喷注浆止水帷幕技术. 煤田地质与勘探. 2020(04): 74-79 . 本站查看
13. 王海,彭巍,曹海东,王丽. 露天煤矿截水帷幕效果检验方法及截水效果分析. 煤田地质与勘探. 2020(04): 87-93 . 本站查看
其他类型引用(4)
计量
- 文章访问数: 78
- HTML全文浏览量: 20
- PDF下载量: 9
- 被引次数: 17