Hydraulic fracturing technology for permeability improvement through underground long borehole along coal seam
-
摘要: 针对我国低透气性煤层普遍存在瓦斯抽采效果差的现状,提出了利用大直径长钻孔水力压裂对煤层进行增透的技术措施,探讨了长钻孔水力压裂增透机理,并进行了煤矿井下煤层水力压裂瓦斯抽采试验。在成功施工顺层长钻孔的基础上,研发了一套适合井下水力压裂施工的快速封孔工具组合,分析了压裂过程中参数变化规律,提出了水力压裂影响范围、压裂效果和瓦斯抽采效果评价方法,并进行了考察和评价。研究表明:该技术克服了传统井下水力压裂存在的封孔质量差、压裂影响范围小等问题,压裂后煤层透气性系数提高了2.67倍,压裂最大影响半径达到了58 m,压裂后连续抽采130 d累计抽采纯瓦斯量为31.39万m3,日最高抽采量2 668 m3,瓦斯体积分数平均70.05%,百米钻孔瓦斯抽采纯量达到0.55 m3/min。Abstract: Aiming at the general poor gas drainage effect of coal seams with low permeability in China, the paper put forward the technical measures of hydraulic fracturing for permeability improvement through large-diameter long boreholes, the mechanism of permeability improvement by hydraulic fracturing in long boreholes was discussed, and gas drainage test using hydraulic fracturing in coal seams in underground coal mines was carried out. On the basis of successful drilling of long boreholes along coal seams, a rapid sealing tool assembly suitable for underground hydraulic fracturing operation was developed. The change law of parameters during fracturing was analyzed, the method for evaluation of the influence range of hydraulic fracturing, the effect of hydraulic fracturing and gas drainage was put forward, investigated and assessed. The research indicated that the technology had overcame the problems existing generally in traditional underground hydraulic fracturing, such as poor hole-sealing quality and small influence range of fracturing. After fracturing, the permeability coefficient of seam increased by 2.67 times, the maximum influence range of fracturing reached 58 m, during 130 d totally 31.39×104 m3 pure gas was drained with the maximum daily extraction of 2 668 m3 and the mean gas volume fraction of 70.05%, the drained pure gas quantity of 100 m of borehole was up to 0.55 m3/min.
-
-
[1] 张有狮. 煤矿井下水力压裂技术研究进展及展望[J]. 煤矿安全,2012,43(12):163-172. ZHANG Youshi. Research progress and prospect of hydraulic fracturing technologies in coal mine underground[J]. Safety in Coal Mines,2012,43(12):163-172.
[2] 吕有厂. 水力压裂技术在高瓦斯低透气性矿井中的应用[J]. 重庆大学学报,2010,33(7):102-107. LYU Youchang. Application the hydraulic fracturing technology in the high pressure and low permeability mine[J]. Journal of Chongqing University,2010,33(7):102-107.
[3] 袁亮,林柏泉,杨威. 我国煤矿水力化技术瓦斯治理研究进展及发展方法[J]. 煤炭科学技术,2015,43(1):45-49. YUAN Liang,LIN Baiquan,YANG Wei. Research progress and development direction of gas control with mine hydraulic technology in China coal mine[J]. Coal Science and Technology, 2015,43(1):45-49.
[4] 刘晓,张双斌,郭红玉. 煤矿井下长钻孔水力压裂技术研究[J]. 煤炭科学技术,2014,42(3):42-44. LIU Xiao,ZHANG Shuangbin,GUO Hongyu. Research on hydraulic fracturing technology of long borehole in coal mine[J]. Coal Science and Technology,2014,42(3):42-44.
[5] 宋生印,韩宝山. 新集煤层气开发试验井水力压裂增产改造[J]. 煤田地质与勘探,2003,31(1):27-30. SONG Shengyin,HAN Baoshan. The hydraulic fracture stimulation for pilot wells located in Xinji coal area[J]. Coal Geology & Exploration,2003,31(1):27-30.
[6] 韩保山. 低渗煤层压裂机理及应用[J]. 煤田地质与勘探, 2016,44(3):25-29. HAN Baoshan. Research on fracturing mechanism of low permeability coal seam and application of surface CBM drainage[J]. Coal Geology & Exploration,2016,44(3):25-29.
[7] 苏现波,刘晓,倪小明,等. 煤矿井下钻孔水力压裂增透抽采瓦斯工艺:CN 101403314[P]. 2009-04-08. [8] 王魁军,富向,曹林,等垚. 穿层钻孔水力压裂疏松煤体瓦斯抽放方法:CN101581231[P]. 2009-11-18. [9] 李全贵,翟成,林柏泉,等. 定向水力压裂技术研究与应用[J]. 西安科技大学学报,2011,31(6):735-739. LI Quangui,ZHAI Cheng,LIN Baiquan,et al. Research and application of directional hydraulic fracturing technology[J]. Journal of Xi'an University of Science and Technology,2011, 31(6):735-739.
[10] 林柏泉,李子文,翟成,等. 高压脉动水力压裂卸压增透技术及应用[J]. 采矿与安全工程学报,2011,28(3):452-455. LIN Baiquan,LI Ziwen,ZHAI Cheng,et al. Pressure relief and permeability-increasing technology based on high pressure puasating hydraulic fracturing and its application[J]. Journal of Mining & Safety Engineering,2011,28(3):452-455.
[11] 翟成,李贤忠,李全贵. 煤层脉动水力压裂卸压增透技术研究与应用[J]. 煤炭学报,2011,36(12):1996-2001. ZHAI Cheng,LI Xianzhong,LI Quangui. Research and application of coal seam pulse hydraulic fracturing technology[J]. Journal of China Coal Society,2011,36(12):1996-2001.
[12] 郭红玉. 基于水力压裂的煤矿井下瓦斯抽采理论与技术[D]. 焦作:河南理工大学,2011. [13] 富向. 井下点式水力压裂增透技术研究[J]. 煤炭学报,2011, 36(8):1317-1321. FU Xiang. Study of underground point hydraulic fracturing increased permeability technology[J]. Journal of China Coal Society,2011,36(8):1317-1321.
[14] 王耀锋,李艳增. 预置导向槽定向水力压穿增透技术及应用[J]. 煤炭学报,2012,37(8):1326-1331. WANG Yaofeng,LI Yanzeng. The technology and application of directional hydraulic penetration permeability improvement by guided groove[J]. Journal of China Coal Society,2012,37(8):1326-1331.
-
期刊类型引用(7)
1. 刘文亮. 王洼煤矿“三带”发育规律相似模拟试验研究. 煤. 2023(08): 82-85 . 百度学术
2. 孙四清,李文博,张俭,陈冬冬,赵继展,郑凯歌,龙威成,王晨阳,贾秉义,杜天林,刘乐,杨欢,戴楠. 煤矿井下长钻孔分段水力压裂技术研究进展及发展趋势. 煤田地质与勘探. 2022(08): 1-15 . 本站查看
3. 杜天林,姜在炳,张俭,舒建生,李贵红,牟全斌,贾立龙. 碎软煤层底板梳状孔分段压裂抽采瓦斯技术. 煤矿安全. 2021(01): 107-113 . 百度学术
4. 安世岗,陈殿赋,张永民,孔德磊,李阳,张迪,王洋. 可控电脉冲波增透技术在低透气性煤层中的应用. 煤田地质与勘探. 2020(04): 138-145 . 本站查看
5. 巩跃斌,华明国,黄晓昇. 余吾煤业7602工作面“三带”发育规律相似材料模拟试验研究. 煤炭科技. 2019(04): 47-51 . 百度学术
6. 路璐. 穿层定向长钻孔水力压裂增透技术. 山东煤炭科技. 2019(08): 94-96 . 百度学术
7. 王建利,陈冬冬,贾秉义. 韩城矿区碎软煤层顶板梳状孔水力压裂瓦斯抽采工程实践. 煤田地质与勘探. 2018(04): 17-21 . 本站查看
其他类型引用(6)
计量
- 文章访问数: 160
- HTML全文浏览量: 68
- PDF下载量: 10
- 被引次数: 13