Preparation of coal-series solid-waste-based green filling materials and their performance
-
摘要:
充填技术是绿色开采的重要组成部分,研发成本低廉、性能可靠、低碳环保的充填材料,是发展充填技术的关键。采用煤矸石(CG)和煤系偏高岭土(MK)为原材料制备煤系固废基绿色充填材料,探讨配合比和碱激发剂对充填材料强度以及流动度的影响,并结合X射线衍射(XRD)、傅里叶变换红外吸收光谱仪(FTIR)、热重分析(TG)和扫描电镜能谱分析(SEM-EDS)等表征手段,揭示充填强度发展机理。综合强度、流动性和环境指标,优化充填材料配比。研究结果表明:绿色充填材料体系中,煤系偏高岭土通过碱激发水化反应起到胶凝作用,体系强度随偏高岭土的增加呈线性增长,磨细的煤矸石充当惰性填料,协同Na2SiO3改善流动性。该充填材料主要水化产物为N―A―S―H和沸石,Si―O―Si发生聚解,随即四面体Al―O键部分取代Si―O键,由(SiO4)4−变成(AlO4)4−,进一步聚合形成Si―O―Al基团。当碱激发剂中Na2SiO3与NaOH比例为1∶1时,聚合程度最高。水化产物填充了煤矸石颗粒间孔隙,使基质致密,提高充填材料强度。综合指标评价推荐偏高岭土与煤矸石的配比为3∶7,此时不仅满足强度和流动性的要求,而且碳排放指数仅有0.257。本研究为开发成本低廉、性能可靠、低碳环保的充填材料提供新的思路,具有较好的实用性和经济性。
Abstract:The filling technology is an important part of green mining. The low-carbon environmental-friendly filling materials with low costs in research and development and reliable performance are critical for the development of filling technologies. The coal gangue (CG) and coal-series metakaolin (MK) were adopted as the raw materials to prepare coal-series solid-waste-base green filling materials, and the effect of the mixing proportion and alkali activator on the strength and fluidity of filling materials was discussed. In combination with the X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric (TG) analysis and scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM-EDS) and other characterization measures, the filling strength development mechanism was revealed. Considering the strength, fluidity and environmental indexes, the mixing proportion of filling materials was optimized. As indicated by the research results, in the green filling material system, the coal-series metakaolin generates gelatinization effects through alkali-activated hydration reaction. The system strength is increased in a linear mode with the increase of metakaolin. The finely-grounded coal gangue is used as the inert filler that coordinates with Na2SiO3 to improve fluidity. The main hydration products of this filling material are N ― A ― S ― H and zeolites. Right after Si ― O ― Si depolymerization, the tetrahedral Al ― O bond takes the place of Si ― O bond, resulting in the change of (SiO4)4− into (AlO4)4−. Through further polymerization, the Si ― O ― Al group is generated. When the ratio between Na2SiO3 and NaOH is 1∶1 in the alkali activator, the polymerization degree is the highest. The hydration products are filled into the pores of coal gangue particles, leading to dense matrix and stronger filling materials. As recommended based on the comprehensive index evaluation, the mixing ratio between metakaolin and coal gangue shall be 3∶7, which does not only meet the requirements of strength and fluidity but also provides the carbon emission index as low as 0.257. This research provides new approaches for developing the low-carbon environmental-friendly filling materials with low costs and reliable performance, and is highly practical and economically efficient.
-
-
表 1 原材料的化学组成
Table 1 Chemical composition of raw materials
原材料 各组成质量分数/% SiO2 Al2O3 Fe2O3 CaO Na2O SO3 Loss 偏高
岭土54.29 41.52 0.63 0.35 0.31 0.04 1.09 煤矸石 47.35 21.85 3.22 4.86 0.71 5.69 3.09 表 2 原材料配比设计
Table 2 Mix proportion design of raw materials
编号 各成分质量分数/% 碱类型 煤矸石 偏高岭土 碱外掺量 Na2SiO3∶NaOH A1 30 70 10 1∶2 A2 40 60 10 1∶2 A3 50 50 10 1∶2 A4 60 40 10 1∶2 A5 70 30 10 1∶2 A6 80 20 10 1∶2 B1 30 70 10 1∶1 B2 40 60 10 1∶1 B3 50 50 10 1∶1 B4 60 40 10 1∶1 B5 70 30 10 1∶1 B6 80 20 10 1∶1 C1 30 70 10 2∶1 C2 40 60 10 2∶1 C3 50 50 10 2∶1 C4 60 40 10 2∶1 C5 70 30 10 2∶1 C6 80 20 10 2∶1 D1 30 70 10 3∶1 D2 40 60 10 3∶1 D3 50 50 10 3∶1 D4 60 40 10 3∶1 D5 70 30 10 3∶1 D6 80 20 10 3∶1 表 3 原材料二氧化碳排放量
Table 3 Carbon dioxide emissions of raw materials
原材料 MK CG NaOH Na2SiO3 CO2排放量/(kg·m−3) 0.400 0.079 1.30 1.86 -
[1] 王双明,师庆民,王生全,等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报,2021,46(5):1365−1377. WANG Shuangming,SHI Qingmin,WANG Shengquan,et al. Resource property and exploitation concepts with green and low–carbon of tar–rich coal as coal–based oil and gas[J]. Journal of China Coal Society,2021,46(5):1365−1377.
[2] LI Jiayan,WANG Jinman. Comprehensive utilization and environmental risks of coal gangue:A review[J]. Journal of Cleaner Production,2019,239:117946. DOI: 10.1016/j.jclepro.2019.117946
[3] ZHANG Yuanlan,LING T C. Reactivity activation of waste coal gangue and its impact on the properties of cement–based materials:A review[J]. Construction and Building Materials,2020,234:117424. DOI: 10.1016/j.conbuildmat.2019.117424
[4] BI Yinli,ZHANG Jian,SONG Ziheng,et al. Arbuscular mycorrhizal fungi alleviate root damage stress induced by simulated coal mining subsidence ground fissures[J]. Science of the Total Environment,2019,652:398−405. DOI: 10.1016/j.scitotenv.2018.10.249
[5] 马杰, 刘萍, 刘今朝, 等. 重庆市煤矸山周边农用地土壤重金属污染评价和定量溯源解析[J/OL]. 环境科学, 2022: 1–18[2022-04-26]. DOI: 10.13227/j. hjkx. 202202123. MA Jie, LIU Ping, LIU Jinzhao, et al. Pollution evaluation and quantitative traceability analysis of heavy metals in farmland soils around the gangue heap of coal mine, Chongqing[J/OL]. Environmental Science, 2022: 1–18[2022-04-26]. DOI: 10. 13227/j. hjkx. 202202123.
[6] 白国良, 刘瀚卿, 刘辉, 等. 煤矸石理化特性及其对混凝土强度的影响[J/OL]. 建筑结构学报, 2022: 1–12[2022-04-20]. DOI: 10.14006/j. jzjgxb. 2021.0735. BAI Guoliang, LIU Hanqing, LIU Hui, et al. Physicochemical properties of coal gangue and its influence on concrete strength[J/OL]. Journal of Building Structures, 2022: 1–12[2022-04-20]. DOI: 10. 14006/j. jzjgxb. 2021. 0735.
[7] 孙艳芳,赵丽,罗绍河,等. 不同地质年代煤矸石中有机质的溶出特征对比[J]. 煤田地质与勘探,2019,47(3):172−178. DOI: 10.3969/j.issn.1001-1986.2019.03.027 SUN Yanfang,ZHAO Li,LUO Shaohe,et al. Comparison of dissolution characteristics of organic matter in coal gangue of different geological time[J]. Coal Geology & Exploration,2019,47(3):172−178. DOI: 10.3969/j.issn.1001-1986.2019.03.027
[8] TAN W F,WANG L A,HUANG C. Environmental effects of coal gangue and its utilization[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2016,38(24):3716−3721.
[9] QIN Ling,GAO Xiaojian. Properties of coal gangue–Portland cement mixture with carbonation[J]. Fuel,2019,245:1−12. DOI: 10.1016/j.fuel.2019.02.067
[10] ZHU Yuanyuan,ZHU Yingcan,WANG Aiguo,et al. Valorization of calcined coal gangue as coarse aggregate in concrete[J]. Cement and Concrete Composites,2021,121:104057. DOI: 10.1016/j.cemconcomp.2021.104057
[11] WANG Hao,JIAO Jian,WANG Yumin,et al. Feasibility of using gangue and fly ash as filling slurry materials[J]. Processes,2018,6(12):232. DOI: 10.3390/pr6120232
[12] 王川,刘超,裴文晶,等. 活化煤矸石制备路基充填材料的探讨[J]. 材料科学与工程学报,2022,40(1):97−103. WANG Chuan,LIU Chao,PEI Wenjing,et al. Discussion on the preparation of roadbed filling material with activated coal gangue[J]. Journal of Materials Science & Engineering,2022,40(1):97−103.
[13] 张宗堂, 高文华, 刘昌平, 等. 级配对煤矸石路基填料压实与强度特性的影响试验研究[J/OL]. 工程地质学报, 2022: 1–8[2022-03-23]. DOI: 10.13544/j. cnki. jeg. 2021–0564. ZHANG Zongtang, GAO Wenhua, LIU Changping, et al. Experimental study on the effect of gradation on the compaction and strength characteristics of coal gangue subgrade filler[J/OL]. Journal of Engineering Geology, 2022: 1−8[2022-03-23]. DOI: 10. 13544/j. cnki. jeg. 2021–0564.
[14] 张金山,孙春宝,曹钊,等. 煤系高岭岩制备偏高岭土实验研究[J]. 无机盐工业,2016,48(9):64−67. ZHANG Jinshan,SUN Chunbao,CAO Zhao,et al. Experimental research on preparation of metakaolin from coal kaolinite[J]. Inorganic Chemicals Industry,2016,48(9):64−67.
[15] THANKAM G L,RENGANATHAN N T. Ideal supplementary cementing material−metakaolin:A review[J]. International Review of Applied Sciences and Engineering,2020,11(1):58−65. DOI: 10.1556/1848.2020.00008
[16] RAKHIMOVA N R,RAKHIMOV R Z. Reaction products,structure and properties of alkali–activated metakaolin cements incorporated with supplementary materials:A review[J]. Journal of Materials Research and Technology,2019,8(1):1522−1531. DOI: 10.1016/j.jmrt.2018.07.006
[17] TANG Jin,WEI Shuaifei,LI Weifeng,et al. Synergistic effect of metakaolin and limestone on the hydration properties of Portland cement[J]. Construction and Building Materials,2019,223:177−184. DOI: 10.1016/j.conbuildmat.2019.06.059
[18] PILLAY D L,OLALUSI O B,AWOYERA P O,et al. A review of the engineering properties of metakaolin based concrete:Towards combatting chloride attack in coastal/marine structures[J]. Advances in Civil Engineering,2020,2020:8880974.
[19] HE Peigang,CUI Jingyi,WANG Meiling,et al. Interplay between storage temperature,medium and leaching kinetics of hazardous wastes in metakaolin–based geopolymer[J]. Journal of Hazardous Materials,2020,384:121377. DOI: 10.1016/j.jhazmat.2019.121377
[20] LE V S,LOUDA P,TRAN H N,et al. Study on temperature–dependent properties and fire resistance of metakaolin–based geopolymer foams[J]. Polymers,2020,12(12):2994. DOI: 10.3390/polym12122994
[21] WU Hui,WEN Qingbo,HU Liming,et al. Feasibility study on the application of coal gangue as landfill liner material[J]. Waste Management,2017,63:161−171. DOI: 10.1016/j.wasman.2017.01.016
[22] KUMAR M L,REVATHI V. Microstructural properties of alkali–activated metakaolin and bottom ash geopolymer[J]. Arabian Journal for Science and Engineering,2020,45(5):4235−4246. DOI: 10.1007/s13369-020-04417-6
[23] RASHAD A M. Alkali–activated metakaolin:A short guide for civil engineer:An overview[J]. Construction and Building Materials,2013,41:751−765. DOI: 10.1016/j.conbuildmat.2012.12.030
[24] 中国煤炭工业协会. 煤矿膏体充填材料试验方法: NB/T 51070—2017[S]. 北京: 煤炭工业出版社, 2017. [25] MA Hongqiang,ZHU Hongguang,YI Cheng,et al. Preparation and reaction mechanism characterization of alkali–activated coal gangue–slag materials[J]. Materials,2019,12(14):2250. DOI: 10.3390/ma12142250
[26] KOOHESTANI B,DARBAN A K,MOKHTARI P. A comparison between the influence of superplasticizer and organosilanes on different properties of cemented paste backfill[J]. Construction and Building Materials,2018,173:180−188. DOI: 10.1016/j.conbuildmat.2018.03.265
[27] YI Cheng,MA Hongqiang,CHEN Hongyu,et al. Preparation and characterization of coal gangue geopolymers[J]. Construction and Building Materials,2018,187:318−326. DOI: 10.1016/j.conbuildmat.2018.07.220
[28] LIU Yi,YANG Xiaohui,YAN Chunjie,et al. Solvent–free synthesis of zeolite LTA monolith with hierarchically porous structure from metakaolin[J]. Materials Letters,2019,248:28−31. DOI: 10.1016/j.matlet.2019.03.135
[29] LANCELLOTTI I,CATAURO M,PONZONI C,et al. Inorganic polymers from alkali activation of metakaolin:Effect of setting and curing on structure[J]. Journal of Solid State Chemistry,2013,200:341−348. DOI: 10.1016/j.jssc.2013.02.003
[30] 马宏强,易成,陈宏宇,等. 碱激发煤矸石–矿渣胶凝材料的性能和胶结机理[J]. 材料研究学报,2018,32(12):898−904. MA Hongqiang,YI Cheng,CHEN Hongyu,et al. Property and cementation mechanism of alkali–activated coal gangue–slag cementitious materials[J]. Chinese Journal of Materials Research,2018,32(12):898−904.
[31] CHAIPANICH A,WIANGLOR K,PIYAWORAPAIBOON M,et al. Thermogravimetric analysis and microstructure of alkali–activated metakaolin cement pastes[J]. Journal of Thermal Analysis and Calorimetry,2019,138(3):1965−1970. DOI: 10.1007/s10973-019-08592-z
[32] CAO Zhao,CAO Yongdan,DONG Hongjuan,et al. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue[J]. International Journal of Mineral Processing,2016,146:23−28. DOI: 10.1016/j.minpro.2015.11.008
[33] SAMSON G,CYR M,GAO Xiaoxiao. Formulation and characterization of blended alkali−activated materials based on flash−calcined metakaolin,fly ash and GGBS[J]. Construction and Building Materials,2017,144:50−64. DOI: 10.1016/j.conbuildmat.2017.03.160
[34] 李国富,张为,李猛,等. 沁水盆地寺家庄区块煤储层含气性及产能控制因素[J]. 煤田地质与勘探,2022,50(3):146−155. LI Guofu,ZHANG Wei,LI Meng,et al. Gas content and productivity controlling factors of coal reservoir in Sijiazhuang area,Qinshui Basin[J]. Coal Geology & Exploration,2022,50(3):146−155.
[35] 姚俊耀,李志立,左迪. 条带开采嗣后充填法充填膏体强度设计及工程应用[J]. 采矿技术,2019,19(5):27−29. YAO Junyao,LI Zhili,ZUO Di. Strip mining is made between flat–back cut and fill method filling paste strength design and engineering application[J]. Mining Technology,2019,19(5):27−29.
[36] QI Chongchong,FOURIE A. Cemented paste backfill for mineral tailings management:Review and future perspectives[J]. Minerals Engineering,2019,144:106025. DOI: 10.1016/j.mineng.2019.106025
[37] LONG Guangcheng,GAO Yu,XIE Youjun. Designing more sustainable and greener self–compacting concrete[J]. Construction and Building Materials,2015,84:301−306. DOI: 10.1016/j.conbuildmat.2015.02.072
[38] ZHANG Junyi,CHEN Tiefeng,GAO Xiaojian. Incorporation of self−ignited coal gangue in steam cured precast concrete[J]. Journal of Cleaner Production,2021,292:126004. DOI: 10.1016/j.jclepro.2021.126004
[39] OUFFA N,TRAUCHESSEC R,BENZAAZOUA M,et al. A methodological approach applied to elaborate alkali−activated binders for mine paste backfills[J]. Cement and Concrete Composites,2022,127:104381. DOI: 10.1016/j.cemconcomp.2021.104381
[40] MA Cong,ZHAO Bin,WANG Luming,et al. Clean and low–alkalinity one–part geopolymeric cement:Effects of sodium sulfate on microstructure and properties[J]. Journal of Cleaner Production,2020,252:119279. DOI: 10.1016/j.jclepro.2019.119279
[41] SHI Jinyan,TAN Jinxia,LIU Baoju,et al. Experimental study on full−volume slag alkali−activated mortars:Air−cooled blast furnace slag versus machine−made sand as fine aggregates[J]. Journal of Hazardous Materials,2021,403:123983. DOI: 10.1016/j.jhazmat.2020.123983
-
期刊类型引用(20)
1. 杨科,于祥,何祥,侯永强,张连富. 不同含水状态矸石胶结充填体能量演化与损伤特性研究. 岩土力学. 2025(01): 26-42 . 百度学术
2. 王波,周俊丽,翟龙虎,张超,王家乐,宋杰. 风积沙-萘系减水剂充填材料流动性测试研究. 兵器材料科学与工程. 2025(01): 94-100 . 百度学术
3. 董书宁,于树江,董兴玲,张步勤,郭小铭,王晓东,王凯,朱世彬,武博强,刘磊. 煤基固废与高盐废水“固液协同”充填处置关键技术. 煤田地质与勘探. 2025(01): 163-173 . 本站查看
4. 于祥,杨科,何祥,侯永强,文志强,张连富. 饱和浸水过程矸石胶结充填体强度及损伤特征. 煤田地质与勘探. 2025(02): 147-159 . 本站查看
5. 程强强,汪浩东,阴琪翔,赵明翔,姚越,闫宝峰. 玻璃纤维改性煤基固废胶结充填材料性能研究. 矿业安全与环保. 2024(01): 161-167+174 . 百度学术
6. 周天璧,蒋波,罗正东. 碱激发胶凝材料在充填领域的应用及发展. 山西建筑. 2024(07): 108-111 . 百度学术
7. 黄鹏程,蔡飞飞,吴天才,赵辉,郭伟勇,梁永平,祁风华. 宁东能源化工基地燃煤电厂粉煤灰的矿物学及元素地球化学特征. 洁净煤技术. 2024(03): 145-152 . 百度学术
8. 刘浪,罗屹骁,朱梦博,苏臣,吴涛涛,王建友,杭彦龙. 建筑物下特厚煤层镁渣基全固废连采连充开采技术与实践. 煤炭科学技术. 2024(04): 83-92 . 百度学术
9. 张丽维,侯恩科,段中会,付德亮,贺丹. 基于AHP熵权TOPSIS模型的矸石充填方案评价和优选研究. 中国煤炭. 2024(05): 120-126 . 百度学术
10. 杨科,张继强,何祥,魏祯,赵新元. 多源煤基固废胶结充填体力学及变形破坏特征试验研究. 煤田地质与勘探. 2024(06): 102-114 . 本站查看
11. 郭昆明. 智能化连续长距离注浆系统的研制及现场实践. 煤矿机电. 2024(03): 1-5 . 百度学术
12. 王思云,任美嘉,周进生. 任家庄煤矿绿色充填示范工程经济社会效益评价研究. 能源科技. 2024(06): 27-30+35 . 百度学术
13. 李运红,王光炎,乔森,郭月明,刘娟,武亚磊. 全固废流态化材料充填性能研究. 人民长江. 2024(S2): 257-262 . 百度学术
14. 刘剑平,谢国帅,曹园章,陈炜旻,白晓红. 盐酸溶液环境下RM-CMK地聚合物的强度机理研究. 非金属矿. 2023(02): 9-12 . 百度学术
15. 侯典臣,郇恒恒. 工业废料氟石膏基充填材料试验研究. 煤矿现代化. 2023(04): 58-61 . 百度学术
16. 罗正东,蒋波,章本本,邓代强,李翔. 碱激发金矿粉充填材料力学性能及微观分析. 矿冶工程. 2023(04): 21-25 . 百度学术
17. 辛亚军,杨俊鹏,陈祖国,王晓鹏,任金武,吴春浩. 薄分层软顶间隔柔模承载解析与快速留巷技术. 采矿与安全工程学报. 2023(06): 1161-1176 . 百度学术
18. 周瑶,刘长友,谢志清,潘海洋. 粒径对煤矸石浆液的性能影响研究. 矿业研究与开发. 2023(12): 118-123 . 百度学术
19. 李硕森,徐青云,吴季洪. 膏体充填开采覆岩移动特征研究. 山西煤炭. 2023(04): 7-13 . 百度学术
20. 殷文文,张理群,丁丹,单士锋,陈永春,安士凯,郑刘根. 淮南潘一矿煤基固废精细化学结构及重金属生态风险评价. 煤田地质与勘探. 2023(12): 176-184 . 本站查看
其他类型引用(5)