Geochemical characteristics and sedimentary model of shales in Lower member of Zhongjiangou Formation in Wudun Sag, Dunhuang Basin
-
摘要:
分析泥页岩形成的沉积环境对页岩气储层评价和甜点区优选具有重要意义。为深入探讨敦煌盆地五墩凹陷中间沟组下段富有机质泥页岩的形成环境和有机质聚集机制,以DY1井为研究对象,开展了总有机碳(TOC)含量、显微组成、碳同位素、主量元素、微量元素和稀土元素等测试。结果表明,五墩凹陷中间沟组下段岩性为灰黑色炭质泥页岩、粉砂质泥页岩夹薄煤层等,泥页岩具有较高的TOC含量,质量分数介于0.53%~25.25%,均值为8.18%,成熟度Rran介于0.74%~1.21%。Mo含量、P/Ti值和有机质显微组成表明,中间沟组下段沉积水体具有较低的初级生产力,高丰度有机质主要来自于陆源高等植物,反映了研究区浅水三角洲–半深湖环境下泥页岩的古生产力不是有机质聚集的关键控制因素;V/(V+Ni)、Ceanom、Th/U和UEF-MoEF协变模式等揭示中间沟组下段泥页岩形成于缺氧环境;Sr/Cu、Rb/Sr和气候指数C等指标反映了温暖–半干旱的古气候条件;Sr/Ba、Ba/Ga、Ca/(Fe+Ca)和Al2O3/MgO等特征指示古水体为淡水–微咸水;Zr/Al、Rb/K和MnO 含量等指标反映了沉积水体为浅水–半深水。依据DY1井沉积环境参数与有机质聚集的关系,建立了中间沟组下段富有机质泥页岩的沉积模式,自下至上经历2个旋回4种沉积模式,沉积水体由浅水三角洲–半深湖沉积–浅水三角洲–半深湖沉积演变,富有机质泥页岩形成于低初级生产力、高等植物陆源输入为主以及缺氧的半深湖环境,缺氧条件是中间沟组下段泥页岩有机质聚集保存的关键控制因素。该研究为敦煌盆地侏罗系页岩气成藏机理、资源潜力评价和有利区优选提供了理论支持。
Abstract:Analysis on the sedimentary environment of shale is of great significance for the evaluation of shale gas reservoir and the optimization of sweet spot. In order to deeply explore the depositional environment of organic-rich shale and the mechanism of organic matter accumulation in the Lower member of Zhongjiangou Formation of Wudun Sag in Dunhuang Basin, the TOC content, maceral composition, carbon isotope, major elements, trace elements and rare earth element were tested based on DY1 well. The results indicate that the lithologies of the Lower member of Zhongjiangou Formation in Wudun Sag are gray-black carbonaceous shale and silty shale with thin coal seam interlayer. The shale has a high TOC content, ranging from 0.53% to 25.25%, averaged 8.18%, with maturity Rran ranging from 0.74% to 1.21%. According to the Mo content, P/Ti ratio and the maceral composition of organic matter, the sedimentation water has low primarily productivity and the rich organic matter is mainly contributed by the terrestrial higher plants, which indicates that the paleoproductivity of shales in the environment of shallow water delta and semi-deep lake is not the major controlling factor of organic matter accumulation. V/(V+Ni), Ceanom, Th/U and the UEF-MoEF covariation reveals that the shale in the Lower member of Zhongjiangou Formation was developed in an anaerobic environment. The indicators such as Sr/Cu, Rb/Sr and climate index C reflect that the paleoclimate was warm to semi-arid. The characteristics of Sr/Ba, Ba/Ga. Ca/(Fe+Ca) and Al2O3/MgO suggest that the palaeo-water was fresh to brackish. Besides, Zr/Al, Rb/K and MnO indicate that the sedimentation water was in shallow to semi-deep depth. According to the relationship between the parameters of sedimentary environment and the accumulation of organic matter in DY1 well, sedimentary models of organic-rich shale in the Lower member of Zhongjianggou Formation were established, with two cycles and four sedimentary models experienced form bottom to top, the sedimentation water evolved from shallow delta to semi-deep lake deposition, and then to shallow delta to semi-deep lake deposition again. The organic-rich shale was formed in the semi-deep lake environment with low primary productivity and terrestrial higher plant input and anaerobic conditions, and the anaerobic condition is the key controlling factor for the accumulation of organic matter in the shale in the Lower member of Zhongjiangou Formation. Generally, this study provides theoretical support for Jurassic shale gas accumulation mechanism, resources potential evaluation and favorable area selection in Dunhuang Basin.
-
充填技术是绿色开采的重要组成部分,充填材料强度是充填技术的核心,研发成本低廉、性能可靠、低碳环保的充填材料[1],是发展充填技术的关键。煤矸石(CG)作为煤矿开采和洗涤过程中的主要固体废弃物,占煤炭总量的15%~20%[2-3]。堆积的煤矸石废渣不仅会占用大量土地资源,而且还有可能会引起地表沉降、土壤污染等灾害[4-5]。就地取材,原地利用,开发煤系固废基绿色充填材料,不仅可解决煤矿开采带来的环境问题,同时还能最大程度提高“三下”压煤采出率。因此,将煤矸石转化为清洁型充填材料,符合我国绿色低碳循环经济发展战略需求。
煤矸石中含有大量的金属和非金属资源,如Al、Si、Fe、C、O等[6-7],已有多项研究提出煤矸石的处理方法和利用途径。传统处理方法是利用煤矸石余能发电[8],但这种方法将煤矸石煅烧后仍会产生大量残渣,容易造成二次污染。近年来,研究人员对潜在活性较低的煤矸石作为建筑、充填材料开展广泛研究,如煤矸石用作水泥基材料添加剂,对煤矸石进行预处理可以激发其火山灰活性[9],从而提高水泥基材料的强度。用作混凝土骨料,不仅可以满足混凝土的力学强度,也能满足混凝土的耐久性要求[10]。Wang Hao等[11]将煤矸石和粉煤灰混合制成浆料,直接用于采空区充填,减少了煤矸石对环境的危害。部分学者[12-13]采用煤矸石和矿粉等制作一种路基回填材料,复合材料的流变特性、抗压强度、凝结时间等均满足路基回填材料的技术要求。尽管此类煤矸石得到了一定的应用,但其潜在活性低、级配需定向调整对复合材料的强度均有很大影响。另外,由于附加值较低,依赖于运输距离,作为建材、路基填料等应用前景具有一定的局限性。
另一类与煤层伴生的硬质高岭土煤矸石,含碳量低,黏土矿物含量高[14],潜在活性高,经800℃煅烧脱羟基后可制备煤系偏高岭土。由于偏高岭土的主要成分是二氧化硅和氧化铝,已经成为碱激发材料的重要组成部分,具有较高的技术优势和经济优势[15]。偏高岭土作为矿物添加剂或水泥掺合料已经得到广泛研究[16],替代部分水泥不仅可以减少CO2排放,而且可以改善水泥强度[17]。D. L. Pillay等[18]采用偏高岭土制作地聚物混凝土,发现在海洋工程中可以有效抵抗氯离子的侵蚀。此外,偏高岭土地聚物具有良好的抗渗性,也可作为危险废物的封装,有效减少放射性元素的浸出[19]。V. S. Le等[20]也发现碱激发偏高岭土具有较强的抗火性,可以作为耐火性涂料等。煤系偏高岭土的碱激发胶凝特性为其作为充填材料资源化利用提供了可能,但其反应需水量大、流动性差,限制了其作为矿山充填材料的应用。
煤矸石的潜在活性较低,难以提供充填材料所需的胶凝强度,而潜在活性高的煤系偏高岭土(MK),存在需水量大、流动性差的应用缺陷。基于此,笔者将两类煤矸石进行资源化协同利用,探讨复配制备煤系固废基绿色充填材料的可行性。综合评估两类固废掺比和碱激发剂对该充填材料强度和流动性的影响规律,采用XRD、FTIR、TG和SEM-EDS等表征手段,揭示煤系固废基充填材料反应机理,结合强度、流动性和环境指标,优化了材料配比。本研究可为充填技术发展和绿色矿山建设提供更为广阔的空间。
1 材料与方法
1.1 实验材料
煤矸石取自山西运城某煤矿堆土场,煤系偏高岭土由该矿煤系高岭土煤矸石煅烧制得。采用机械活化的方式对煤矸石进行预处理,基于以往研究工艺,将煤矸石球磨至所需粒径[21],粒径分布曲线如图1所示。由图1可知,偏高岭土不均匀系数Cu=4.35<5,曲率系数Cc=0.90<1;煤矸石不均匀系数Cu=24.89>5,曲率系数Cc=0.60<1,表明煤矸石和偏高岭土的级配均不良。XRD矿物组成如图2所示,原材料的主要矿物是以石英为主,伴随有白云母、高岭石和锐钛矿。2种原材料的化学成分见表1,主要成分为二氧化硅和氧化铝。碱激发材料选用Na2SiO3和NaOH固体颗粒,按照0.7的水胶比称取去离子水,将碱颗粒充分溶解冷却后待用。
表 1 原材料的化学组成Table 1. Chemical composition of raw materials原材料 各组成质量分数/% SiO2 Al2O3 Fe2O3 CaO Na2O SO3 Loss 偏高
岭土54.29 41.52 0.63 0.35 0.31 0.04 1.09 煤矸石 47.35 21.85 3.22 4.86 0.71 5.69 3.09 1.2 实验方法
较单独使用NaOH类的激发剂,Na2SiO3与NaOH的混合激发效果较好[22],常规的碱激发材料往往需要高浓度碱溶液[23]。为节约成本,本文固定总碱外掺量质量分数为10%,Na2SiO3与NaOH质量之比分别为1∶2、1∶1、2∶1、3∶1,编号为A、B、C、D,共4种碱激发剂用于激发偏高岭土与煤矸石组成的充填材料。按照标准NB/T 51070—2017《煤矿膏体充填材料试验方法》[24]开展流动性实验和抗压强度实验。将煤矸石与偏高岭土按照不同的比例混合,配比设计见表2,采用行星式搅拌机搅拌,搅拌3 min后加入配好的碱溶液,再搅拌3~5 min后将拌好的浆体注入50 mm×50 mm的圆柱形模具中,在振动台上振动3 min排除浆体中的气体,成型后试样如图3所示。试样拆模后用自封袋密封,在20℃、95%湿度条件下进行标准养护,养护至所需龄期后开展抗压强度测试,强度结果为3个平行样的平均值。
表 2 原材料配比设计Table 2. Mix proportion design of raw materials编号 各成分质量分数/% 碱类型 煤矸石 偏高岭土 碱外掺量 Na2SiO3∶NaOH A1 30 70 10 1∶2 A2 40 60 10 1∶2 A3 50 50 10 1∶2 A4 60 40 10 1∶2 A5 70 30 10 1∶2 A6 80 20 10 1∶2 B1 30 70 10 1∶1 B2 40 60 10 1∶1 B3 50 50 10 1∶1 B4 60 40 10 1∶1 B5 70 30 10 1∶1 B6 80 20 10 1∶1 C1 30 70 10 2∶1 C2 40 60 10 2∶1 C3 50 50 10 2∶1 C4 60 40 10 2∶1 C5 70 30 10 2∶1 C6 80 20 10 2∶1 D1 30 70 10 3∶1 D2 40 60 10 3∶1 D3 50 50 10 3∶1 D4 60 40 10 3∶1 D5 70 30 10 3∶1 D6 80 20 10 3∶1 微观试验时,将抗压强度测试后的试样破碎后用无水乙醇终止水化反应,干燥后取块状样品进行SEM-EDS试验,将样品粘到导电胶上,并使用Oxford Quorum SC7620溅射镀膜仪喷金,随后使用TESCAN MIRA LMS型号的扫描电子显微镜对样品进行测试。另取样品研磨成粉末分别进行XRD、FTIR和热重测试,使用日本Rigaku SmartLab SE型X射线衍射分析仪对样品进行XRD测试,扫描衍射角范围为5°~70°;使用Thermo Scientific Nicolet iS20傅立叶红外光谱仪测试样品的FTIR频谱,测试波数400~4 000 cm−1;使用NETZSCH STA 449F3热重分析仪测试不同温度下样品的质量损失。
2 结果与分析
2.1 抗压强度实验
图4为不同龄期下试样的抗压强度,可以看出,随着偏高岭土掺量的增加,抗压强度逐渐增大。以3 d龄期的A组为例,从A6到A5,强度增长了35%;而从A2到A1,强度增长了42%;说明当偏高岭土掺量在50%以内时,增长幅度较慢,当掺量在50%以上时,抗压强度的增长幅度较大。对于不同碱激发剂,B3强度比A3、C3、D3分别高56%、69%、115%,说明随着Na2SiO3掺量的增加,抗压强度呈现先增加后减小的趋势,其中当Na2SiO3∶NaOH=1∶1时,抗压强度最大。此外,随着养护龄期的增长,胶凝材料的抗压强度也呈现不同程度的增长,其中3~7 d强度增长缓慢,14~28 d强度相对增长较快。偏高岭土的主要化学成分是SiO2和Al2O3,在碱性环境下,偏高岭土中的硅、铝化合物会溶解产生硅酸根离子和铝酸根离子,碱溶液中的Na+充当阳离子与其进行键合,在重组和缩聚作用下产生大量的硅铝酸盐凝胶,将煤矸石颗粒黏结在一起,从而形成致密结构。对于偏高岭土与煤矸石混合的体系中,骨架的形成很大程度上依赖于偏高岭土产生的凝胶,而碱激发剂直接影响其溶解效果,合适的碱溶液能够使单体颗粒产生更多的反应键,从而增强混合物中分子间的键合强度[25]。煤矸石中虽然也有很多的SiO2和Al2O3,但由于活性较差,并且粒径相对较大,若要激发煤矸石的活性可能需要更高浓度的碱溶液,额外的经济成本不利于推广应用。
2.2 流动性
图5给出了试样的流动度结果,从图中可以看出,随着偏高岭土掺量的增加,试样的流动性逐渐减弱;相反偏高岭土的掺量减少,即煤矸石的掺量增加,可以有效改善膏体的流动性。一方面可以延缓胶凝产物的水化速率,另一方面煤矸石级配不良,磨细的球形颗粒有利于充填材料流动扩展,因此,80%掺量的煤矸石膏体流动性最好。当煤矸石掺量大于40%时,均优于前人研究结果[26]。此外,对于不同配比的碱激发剂,随着碱激发剂中Na2SiO3占比的增大,试样的流动性增强,表明Na2SiO3可以改善膏体的流动度,结果与前人研究一致[27]。
2.3 微观机理
2.3.1 XRD分析
图6给出了3 d和28 d龄期试样的XRD图谱。以A1、A3、A6为例探究不同偏高岭土掺量的水化产物;以A3、B3、D3为例,探究不同碱激发剂对水化产物的影响。可以看出,水化产物主要由N―A―S―H、SiO2、沸石组成。随着偏高岭土掺量的增加,N―A―S―H的衍射峰逐渐增强,并且产生沸石类晶相,这与Liu Yi等[28]的发现一致,硅铝酸盐在碱的活化作用下会通过固态转化,转换为沸石晶相。由于煤矸石与偏高岭土中Ca的含量较低,所以只形成少量的C―A―S―H。对于A3、B3、D3试样,随着碱激发剂中Na2SiO3占比的增加,N―A―S―H和沸石类相的衍射峰先增强后减弱,在Na2SiO3与NaOH比例为1∶1时,激发效果最好,产生更多的硅铝酸钠凝胶,增强整体结构的密实度。从图6可以看出,28 d龄期的N―A―S―H和沸石峰更强,表明28 d龄期下产生更多的水化产物,有利于强度的发展。
2.3.2 FTIR分析
图7给出了不同偏高岭土掺量在不同减激发剂下试样的红外光谱图,光谱范围为400~4 000 cm−1。3 695、3 620 cm−1为OH的非对称伸缩振动,对于5个试样在1 654、3 440 cm−1均出现振动峰,并且峰位未发生偏移,是由于水化水羟基引起的振动峰,表明体系中存在一定的化学结合水。1 090、1 086、1 033 cm−1为碱激发作用下T―O―Si(其中T可为Si或Al)的典型非对称伸缩振动,是碱激发聚合的重要特征[29],此处衍射峰最宽,峰值也最强。在800~1 200 cm−1波段内,偏高岭土发生聚合转化为无定型结构,Si―O―Si键发生聚解,四面体Al―O键部分取代Si―O键,由(SiO4)4−变成(AlO4)4−,频带发生偏移,且频率向低频移动得越多说明取代率越高[30]。在此波段内,A1试样相对A6频率更低,B3试样相对于A3和D3试样频率更低,说明偏高岭土掺量较高时,且碱激发剂为Na2SiO3与NaOH质量比为1∶1时,四面体配位的Al取代率更高,碱激发效果更好,因此强度更高。539 cm−1为Si―O―Al弯曲振动峰,该峰振动越剧烈,说明Si―O―Al基团含量越多,A1和B3试样产生更多的硅铝酸基团,与前文XRD结果相一致。799 、780 cm−1为Si―O―Si的典型对称伸缩振动;696 cm−1为Si―O―Si弯曲振动峰,467 cm−1为O―Si―O的弯曲振动。
2.3.3 TG-DSC分析
胶凝体系内主要由N―A―S―H提供胶结作用,为了进一步分析水合程度,图8和图9给出了3 d和28 d龄期下试样的TG和DTG曲线。结合图8和图9可知,在0~200℃范围内出现第1个失重峰为N―A―S―H[31],失重峰的大小可在一定程度上反映水化程度的强弱,可以看出主要火山灰活性材料偏高岭土的掺量越多,失重越大,3 d龄期时偏高岭土最多的A1组在200℃失重约为7.3%,生成的水化产物最多,样品表现出的强度也最高,水化产物的矿物相也说明了该结果。在400~600℃出现第2个失重峰,基于该胶凝材料体系,该失重峰的原因可归结为原材料中的高岭石脱羟基水[32]、水化产物氢氧化钙脱羟基水。由于原材料中含有少量的钙,导致原材料中的高岭石和水化产物中的氢氧化钙相互杂糅形成了该阶段的失重峰,且变化规律不明显。因此,该胶凝体系水合程度的多少主要依赖于0~200℃的热重分析,发展规律和强度具有一致性。
2.3.4 SEM分析
为进一步探究水化产物的微观形貌,图10给出了28 d龄期下的SEM图。观察可知,偏高岭土与煤矸石的混合物与偏高岭土基地聚物相似,呈现出松散的微观结构[33],具有明显的片状和层状结构。由于固液反应可以看成是低水胶比的胶凝体系,所以聚合过程中会保留基本的原始特征形状。偏高岭土掺量为20%的A6试样可以明显看到煤矸石大颗粒,N―A―S―H凝胶较少且分布不均,无法充分填充到煤矸石的孔隙中,因此结构性较差。相比于偏高岭土掺量为70%的A1试样,N―A―S―H凝胶较多且分布均匀,煤矸石自身的多孔特性,有一定的吸附作用,会将凝胶吸附到颗粒表面,界面附着力较好,能与煤矸石有效结合成密实结构。对于不同的碱激发剂,相比于A3和D3试样,Na2SiO3∶NaOH为1∶1的B3试样的表面团状、絮状胶凝晶体明显均匀密实,同时从EDS结果也可以看出,N―A―S―H凝胶附着在煤矸石表面时,Na会与煤矸石微量的Ca元素发生置换,形成少量的C―A―S―H。
2.4 综合指标评价
为综合评定偏高岭土与煤矸石充填材料的适用性,首先对早期强度和流动性指标进行评估,结果如图11所示。结合图中强度和流动性的交叉点,可初步选取配比如下:Na2SiO3∶NaOH=1∶2时,偏高岭土∶煤矸石=4∶6;Na2SiO3∶NaOH=1∶1时,偏高岭土∶煤矸石=3∶7;Na2SiO3∶NaOH=2∶1时,偏高岭土∶煤矸石=5∶5;Na2SiO3∶NaOH=3∶1时,偏高岭土∶煤矸石=6∶4。山西沁水盆地煤矿煤层平均厚度一般在5 m[34],对于山西煤矿充填体早期强度的计算方法采用下式[35]计算:
$$ {y^2} = a{x^3} $$ (1) 式中:y为胶结充填体高度,m;x为胶结充填体强度;MPa;a为经验系数。
经过计算5 m充填体高度的充填体强度要求为0.35 MPa,因此,满足强度要求的充填材料为Na2SiO3∶NaOH=1∶2时,偏高岭土∶煤矸石=4∶6;Na2SiO3∶NaOH=1∶1时,偏高岭土∶煤矸石=3∶7。同时,在这2种配比情况下,流动性均满足矿山充填管道输送标准[36]。
制备的煤系固废基绿色充填材料是一种低成本、环保型材料,原材料CO2排放量[37-40]见表3。其中煤矸石为原位取材,不考虑运输过程中的碳排放,只考虑分选时少量的CO2排放,选取文献[41]的计算方法,采用碳排放指数CI来计算充填材料的CO2排放量,如下式,结果如图12所示。对比上述配比可知,当Na2SiO3∶NaOH=1∶1,偏高岭土∶煤矸石=3∶7时,CI为0.257,碳排放最低。
表 3 原材料二氧化碳排放量Table 3. Carbon dioxide emissions of raw materials原材料 MK CG NaOH Na2SiO3 CO2排放量/(kg·m−3) 0.400 0.079 1.30 1.86 $$ {\rm{CI}} = \frac{{{e_{{\text{C}}{{\text{O}}_{\text{2}}}}}}}{{{f_{\text{c}}}}} $$ (2) 式中:
$ {e_{{\text{CO}}}}_{_2} $ 为1 m3膏体材料CO2的总排放量,kg/m3;fc为28 d龄期的抗压强度,MPa。3 结 论
a. 以煤矸石制备绿色充填材料,随着偏高岭土掺量的增加,充填材料的强度增大,流动性减弱。煤矸石可以改善充填材料的流动性,煤矸石掺量越多,流动性越强,但是不利于强度的发展。当Na2SiO3和NaOH的比例为1∶1,强度最高,且Na2SiO3的掺量越多,流动性越好。
b. 在碱性环境下,偏高岭土的Al―O基团取代部分Si―O基团,形成N―A―S―H凝胶和沸石类产物,并且随着偏高岭土掺量的增加,可以加速沸石和硅铝酸盐凝胶的生成,在碱激发剂Na2SiO3和NaOH的比例为1∶1下,水化产物最多。
c. 在偏高岭土与煤矸石的混合体系中,水化产物N―A―S―H附着在煤矸石表面,煤矸石中少量的Ca可以取代部分Na,形成C―A―S―H。偏高岭土的水化产物可以充分填充煤矸石颗粒的孔隙,致密化结构,从而改善体系的强度,其中70%偏高岭土掺量的形貌最为密实。
d. 结合强度、流动性与环境性指标对充填材料性能进行综合评价,推荐碱激发剂中Na2SiO3与NaOH的最优配比为1∶1,偏高岭土与煤矸石的最优配比为3∶7,此时强度和流动性均可以满足充填要求,并且碳排放指标低至0.257。
-
表 1 DY1井中间沟组下段泥页岩主微量元素特征及部分古环境参数
Table 1 Main and trace elements and partial paleoenvironmental parameters of shales in the Lower member of Zhongjiangou Formation in DY1 well
层段 深度/m 主量元素质量分数/% 微量元素含量/(mg·kg−1) P/Ti V/(V+Ni) Th/U Sr/Cu Rb/Sr Sr/Ba Ba/Ga SiO2 Al2O3 CaO Fe2O3 K2O MgO TiO2 P2O5 MnO Ba Cu Ga Rb Ni Sr V Th U 上
亚
段1156.79
~
1168.2238.55
~
81.4010.35
~
29.940.07
~
0.441.23
~
3.010.75
~
2.730.19
~
0.630.31
~
0.860.03
~
0.220.002
~
0.018136.00
~
412.003.22
~
44.4013.40
~
35.7053.40
~
188.006.44
~
49.9050.10
~
102.0022.30
~
93.907.67
~
29.003.17
~
10.800.06
~
0.170.64
~
0.782.42
~
3.512.30
~
15.570.52
~
2.600.12
~
0.624.22
~
30.66下
亚
段1183.38
~
1217.9028.36
~
59.7121.19
~
30.970.14
~
0.371.52
~
5.980.19
~
2.800.22
~
1.510.71
~
1.240.02
~
0.180.003
~
0.01374.70
~
900.0013.90
~
38.1025.30
~
35.5016.30
~
193.0020.30
~
111.0078.40
~
176.0083.20
~
188.0014.00
~
31.905.52
~
8.290.02
~
0.100.48
~
0.852.53
~
4.792.41
~
11.560.15
~
2.050.20
~
1.492.11
~
35.53表 2 DY1井中间沟组下段泥页岩稀土元素含量及部分参数
Table 2 Rare earth element content and partial parameters of shales in the Lower member of Zhongjiangou Formation in DY1 well
层段 深度/m 稀土元素含量/(mg·kg−1) (La/Yb)N (La/Sm)N (Gd/Yb)N Ceanom La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 上
亚
段1156.79
~
1168.22167.10
~
496.05125.84
~
304.8290.83
~
219.0666.16
~
162.4236.89
~
94.4220.30
~
52.4532.37
~
86.9020.91
~
61.5116.09
~
48.6414.03
~
42.4314.21
~
42.9513.15
~
38.8112.58
~
36.3612.48
~
36.499.53
~
22.574.51
~
4.931.36
~
3.16−0.085
~
−0.003下
亚
段1183.38
~
1217.90186.66
~
251.72136.57
~
188.7596.22
~
143.0369.38
~
108.8437.95
~
67.6023.64
~
38.1532.77
~
58.9522.02
~
43.4316.87
~
35.7214.85
~
31.914.99
~
32.1513.87
~
29.8113.10
~
28.1513.39
~
28.178.89
~
58.113.86
~
6.551.45
~
4.63−0.036
~
0.039 -
[1] 王红岩,刘德勋,蔚远江,等. 大面积高丰度海相页岩气富集理论及地质评价技术进展与应用[J]. 煤田地质与勘探,2022,50(3):69−81. WANG Hongyan,LIU Dexun,YU Yuanjiang,et al. Enrichment theory of large area and high abundance marine shale gas and its geological evaluation technology process and application[J]. Coal Geology & Exploration,2022,50(3):69−81.
[2] 王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质,2015,36(1):1−6. WANG Zhigang. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology,2015,36(1):1−6.
[3] 刘艳杰,程党性,邱庆伦,等. 南华北盆地下二叠统泥页岩孔隙特征及控制因素[J]. 天然气地球科学,2020,31(10):1501−1513. LIU Yanjie,CHENG Dangxing,QIU Qinglun,et al. Characteristics of pores controlling factors of Lower Permian shales in southern North China Basin[J]. Natural Gas Geoscience,2020,31(10):1501−1513.
[4] 何治亮,聂海宽,李双建,等. 特提斯域板块构造约束下上扬子地区二叠系龙潭组页岩气的差异性赋存[J]. 石油与天然气地质,2021,42(1):1−15. HE Zhiliang,NIE Haikuan,LI Shuangjian,et al. Differential occurrence of shale gas in the Permian Longtan Formation of Upper Yangtze region constrained by plate tectonics in the Tethyan domain[J]. Oil & Gas Geology,2021,42(1):1−15.
[5] 郭旭升,胡东风,刘若冰,等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业,2018,38(10):11−18. GUO Xusheng,HU Dongfeng,LIU Ruobing,et al. Geological conditions and exploration potential of Permian marine–continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry,2018,38(10):11−18.
[6] 孙则朋,王永莉,魏志福,等. 海陆过渡相页岩含气性及气体地球化学特征:以鄂尔多斯盆地山西组页岩为例[J]. 中国矿业大学学报,2017,46(4):859−868. SUN Zepeng,WANG Yongli,WEI Zhifu,et al. Shale gas content and geochemical characteristics of marine–continental transitional shale:A case from the Shanxi Formation of Ordos Basin[J]. Journal of China University of Mining & Technology,2017,46(4):859−868.
[7] 王作华. 鄂西咸丰地区咸地2井上奥陶统五峰组–下志留统龙马溪组页岩沉积环境分析[J]. 中国煤炭地质,2020,32(8):32−37. WANG Zuohua. Well XD–2 Upper Ordovician Wufeng Formation–Lower Silurian Longmaxi Formation shale sedimentary environment analysis in Xianfeng area,Western Hubei[J]. Coal Geology of China,2020,32(8):32−37.
[8] 郭岭,姜在兴,姜文利. 页岩气储层的形成条件与储层的地质研究内容[J]. 地质通报,2011,30(2/3):385−392. GUO Ling,JIANG Zaixing,JIANG Wenli. Formation condition of gas−bearing shale reservoir and its geological research target[J]. Geological Bulletin of China,2011,30(2/3):385−392.
[9] 董大忠,邱振,张磊夫,等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报,2021,39(1):29−45. DONG Dazhong,QIU Zhen,ZHANG Leifu,et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica,2021,39(1):29−45.
[10] 高德燚,平文文,胡宝林,等. 淮南煤田山西组泥页岩微量元素地球化学特征及其意义[J]. 煤田地质与勘探,2017,45(2):14−21. GAO Deyi,PING Wenwen,HU Baolin,et al. Geochemistry characteristics of trace elements of mud shale of Shanxi Formation in Huainan Coalfield and its significance[J]. Coal Geology & Exploration,2017,45(2):14−21.
[11] 刘燕海,李琨杰,刘东娜,等. 沁水盆地新近纪张村组油页岩评价及古环境分析[J]. 煤田地质与勘探,2020,48(5):16−25. LIU Yanhai,LI Kunjie,LIU Dongna,et al. Evaluation and analysis of paleoenvironments of the Neogene oil shale of Zhangcun Formation,Qinshui Basin[J]. Coal Geology & Exploration,2020,48(5):16−25.
[12] 柳忠泉,刘俊民,林中凯. 敦煌盆地有效烃源岩的发现及地质意义[J]. 甘肃地质,2016,25(4):50−55. LIU Zhongquan,LIU Junmin,LIN Zhongkai. Identification and geologic significance of effective source rocks in Dunhuang Basin[J]. Gansu Geology,2016,25(4):50−55.
[13] 张敏,曹力伟. 五墩凹陷中–下侏罗统物源体系及沉积演化特征[J]. 长江大学学报(自科版),2017,14(19):8−12. ZHANG Min,CAO Liwei. The characteristics of Lower Jurassic source system and its sedimentary evolution in Wudun Sag[J]. Journal of Yangtze University (Natural Science Edition),2017,14(19):8−12.
[14] 柳忠泉. 敦煌盆地侏罗系致密油地质特征及其意义[J]. 科学技术与工程,2019,19(12):81−89. DOI: 10.3969/j.issn.1671-1815.2019.12.010 LIU Zhongquan. Characteristics and significance of tight oil geology in Dunhuang Jurassic Basin[J]. Science Technology and Engineering,2019,19(12):81−89. DOI: 10.3969/j.issn.1671-1815.2019.12.010
[15] 黄立功,钟建华,郭泽清,等. 阿尔金造山带中、新生代的演化[J]. 地球学报,2004,25(3):287−294. DOI: 10.3321/j.issn:1006-3021.2004.03.002 HUANG Ligong,ZHONG Jianhua,GUO Zeqing,et al. Evolution of the Altun Orogenic Belt in the Mesozoic and Genozoic[J]. Acta Geoscientica Sinica,2004,25(3):287−294. DOI: 10.3321/j.issn:1006-3021.2004.03.002
[16] 许志琴,杨经绥,张建新,等. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报,1999,73(3):193−205. DOI: 10.3321/j.issn:0001-5717.1999.03.001 XU Zhiqin,YANG Jingsui,ZHANG Jianxin,et al. A comparison between the tectonic units on the two sides of the Altun Sinistral Strike–slip fault and the mechanism of lithospheric shearing[J]. Acta Geologica Sinica,1999,73(3):193−205. DOI: 10.3321/j.issn:0001-5717.1999.03.001
[17] TAYLOR S R, MCLENNAN S M. The continental crust: Its composition and evolution: An examination of the geochemical record preserved in sedimentary rocks[M]. Oxford: Black Well Scientific Publications, 1985.
[18] 董艳蕾,朱筱敏,韦敏鹏,等. 敦煌盆地五墩凹陷侏罗系层序地层格架与沉积体系分布[J]. 地学前缘,2021,28(1):177−189. DONG Yanlei,ZHU Xiaomin,WEI Minpeng,et al. Jurassic sequence framework and sedimentary system distribution in the Wudun Sag,Dunhuang Basin[J]. Earth Science Frontiers,2021,28(1):177−189.
[19] 曹力伟. 敦煌盆地五墩凹陷周缘侏罗系露头沉积特征及油气勘探意义[J]. 石油地质与工程,2018,32(6):6−11. DOI: 10.3969/j.issn.1673-8217.2018.06.002 CAO Liwei. Sedimentary characteristics and the significance of oil and gas exploration of the outcrop of the Jurassic in the Wudun Sag[J]. Petroleum Geology and Engineering,2018,32(6):6−11. DOI: 10.3969/j.issn.1673-8217.2018.06.002
[20] 张学才,李家贵,刘全稳. 甘肃敦煌盆地五墩凹陷致密油成藏地质条件[J]. 地球科学与环境学报,2017,39(2):248−254. DOI: 10.3969/j.issn.1672-6561.2017.02.009 ZHANG Xuecai,LI Jiagui,LIU Quanwen. Geological conditions of tight oil reservoirs in Wudun Sag of Dunhuang Basin,Gansu,China[J]. Journal of Earth Sciences and Environment,2017,39(2):248−254. DOI: 10.3969/j.issn.1672-6561.2017.02.009
[21] 聂海宽,汪虎,何治亮,等. 常压页岩气形成机制、分布规律及勘探前景:以四川盆地及其周缘五峰组–龙马溪组为例[J]. 石油学报,2019,40(2):131−143. DOI: 10.7623/syxb201902001 NIE Haikuan,WANG Hu,HE Zhiliang,et al. Formation mechanism,distribution and exploration prospect of normal pressure shale gas reservoir:A case study of Wufeng Formation–Longmaxi Formation in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica,2019,40(2):131−143. DOI: 10.7623/syxb201902001
[22] 汤冬杰,史晓颖,赵相宽,等. Mo–U共变作为古沉积环境氧化还原条件分析的重要指标:进展、问题与展望[J]. 现代地质,2015,29(1):1−13. TANG Dongjie,SHI Xiaoying,ZHAO Xiangkuan,et al. Mo–U covariation as an important proxy for sedimentary environment redox conditions:Progress,problems and prospects[J]. Geoscience,2015,29(1):1−13.
[23] 彭媛媛,康志宏,李伟奇,等. 武威盆地石炭系泥页岩元素地球化学特征及意义[J]. 现代地质,2017,31(3):574−586. PENG Yuanyuan,KANG Zhihong,LI Weiqi,et al. Element geochemical characteristics of Carboniferous shale in Wuwei Basin and its significance[J]. Geoscience,2017,31(3):574−586.
[24] HASKIN M A,HASKIN L A. Rare earths in European shales:A redetermination[J]. Science,1966,154:507−509. DOI: 10.1126/science.154.3748.507
[25] 赵晨君,康志宏,侯阳红,等. 下扬子二叠系泥页岩稀土元素地球化学特征及地质意义[J]. 地球科学,2020,45(11):4118−4127. ZHAO Chenjun,KANG Zhihong,HOU Yanghong,et al. Geochemical characteristics of rare earth elements and their geological significance of Permian shales in Lower Yangtze area[J]. Earth Science,2020,45(11):4118−4127.
[26] 杨振恒,李志明,王果寿,等. 北美典型页岩气藏岩石学特征、沉积环境和沉积模式及启示[J]. 地质科技情报,2010,29(6):59−65. YANG Zhenheng,LI Zhiming,WANG Guoshou,et al. Enlightenment from petrology character,depositional environment and depositional model of typical shale gas reservoirs in North America[J]. Geological Science and Technology Information,2010,29(6):59−65.
[27] 张水昌,张宝民,边立曾,等. 中国海相烃源岩发育控制因素[J]. 地学前缘,2005,12(3):39−48. ZHANG Shuichang,ZHANG Baomin,BIAN Lizeng,et al. Development constraints of marine source rocks in China[J]. Earth Science Frontiers,2005,12(3):39−48.
[28] 崔晨光,张辉,刘文香,等. 鄂尔多斯盆地东部本溪组一段泥页岩元素地球化学特征:以山西临县招贤剖面和M115井为例[J]. 天然气地球科学,2022,33(6):1001−1012. CUI Chenguang,ZHANG Hui,LIU Wenxiang,et al. Element geochemical characteristics of shale in the First member of Benxi Formation in eastern Ordos Basin:Take Zhaoxian section and well M115 in Linxian County,Shanxi as examples[J]. Natural Gas Geoscience,2022,33(6):1001−1012.
[29] 林晓慧,詹兆文,邹艳荣,等. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境意义[J]. 地球化学,2019,48(1):67−78. LIN Xiaohui,ZHAN Zhaowen,ZOU Yanrong,et al. Elemental geochemical characteristics of the Lucaogou Formation oil shale in the southeastern Junggar Basin and its depositional environmental implications[J]. Geochimica,2019,48(1):67−78.
[30] 杨恩林,吕新彪,鲍淼,等. 黔东下寒武统黑色页岩微量元素的富集及成因分析[J]. 地球科学进展,2013,28(10):1160−1169. DOI: 10.11867/j.issn.1001-8166.2013.10.1160 YANG Enlin,LYU Xinbiao,BAO Miao,et al. Enrichment and origin of some trace elements in black shales from the Early Cambrian in Eastern Guizhou Province[J]. Advances in Earth Science,2013,28(10):1160−1169. DOI: 10.11867/j.issn.1001-8166.2013.10.1160
[31] 孙莎莎,姚艳斌,吝文. 鄂尔多斯盆地南缘铜川地区油页岩元素地球化学特征及古湖泊水体环境[J]. 矿物岩石地球化学通报,2015,34(3):642−645. DOI: 10.3969/j.issn.1007-2802.2015.03.021 SUN Shasha,YAO Yanbin,LIN Wen. Elemental geochemical characteristics of the oil shale and the paleo–lake environment of the Tongchuan area,southern Ordos Basin[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2015,34(3):642−645. DOI: 10.3969/j.issn.1007-2802.2015.03.021
[32] 黄永建,王成善,汪云亮. 古海洋生产力指标研究进展[J]. 地学前缘,2005,12(2):163−170. DOI: 10.3321/j.issn:1005-2321.2005.02.018 HUANG Yongjian,WANG Chengshan,WANG Yunliang. Progress in the study of proxies of paleocean productivity[J]. Earth Science Frontiers,2005,12(2):163−170. DOI: 10.3321/j.issn:1005-2321.2005.02.018
[33] ALGEO T J, KUWAHARA K, SANO H, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–Triassic Panthalassic Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 38(1–2): 65–83.
[34] 罗情勇,钟宁宁,朱雷,等. 华北北部中元古界洪水庄组埋藏有机碳与古生产力的相关性[J]. 科学通报,2013,58(11):1036−1047. DOI: 10.1360/csb2013-58-11-1036 LUO Qingyong,ZHONG Ningning,ZHU Lei,et al. Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation,northern North China[J]. Chinese Science Bulletin,2013,58(11):1036−1047. DOI: 10.1360/csb2013-58-11-1036
[35] 刘传联,徐金鲤. 生油古湖泊生产力的估算方法及应用实例[J]. 沉积学报,2002,20(1):144−150. LIU Chuanlian,XU Jinli. Estimation method on productivity of oil–producing lake and a case study[J]. Acta Sedimentologica Sinica,2002,20(1):144−150.
[36] 张琴,梁峰,王红岩,等. 页岩元素地球化学特征及古环境意义:以渝东南地区五峰–龙马溪组为例[J]. 中国矿业大学学报,2018,47(2):380−390. ZHANG Qin,LIANG Feng,WANG Hongyan,et al. Elements geochemistry and paleo sedimentary significance:A case study of the Wufeng–Longmaxi shale in southeast Chongqing[J]. Journal of China University of Mining & Technology,2018,47(2):380−390.
[37] HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis limestone, Wabaunsee County, Kansas, U. S. A[J]. Chemical Geology, 1992, 99(1/2/3): 65–82.
[38] ELDERFIELD H,GREAVES M J. The rare earth elements in seawater[J]. Nature,1982,296:214−219. DOI: 10.1038/296214a0
[39] PATTAN J N, PEARCE N J G, MISLANKAR P G. Constraints in using Cerium–anomaly of bulk sediments as an indicator of paleo bottom water redox environment: A case study from the Central Indian Ocean Basin[J]. Chemical Geology, 2005, 221(3/4): 260–278.
[40] 杨绪海,郭巍,张佳音,等. 黑龙江东部延兴盆地下白垩统城子河组沉积时期古环境恢复[J]. 世界地质,2018,37(2):491−499. DOI: 10.3969/j.issn.1004-5589.2018.02.015 YANG Xuhai,GUO Wei,ZHANG Jiayin,et al. Paleoenvironment reconstruction of Lower Cretaceous Chengzihe Formation in Yanxing Basin,eastern Heilongjiang[J]. Global Geology,2018,37(2):491−499. DOI: 10.3969/j.issn.1004-5589.2018.02.015
[41] 王东营,汤达祯,苟明福,等. 准噶尔南缘阜康地区芦草沟组油页岩地质特征[J]. 中国石油勘探,2007(6):18−22. DOI: 10.3969/j.issn.1672-7703.2007.06.004 WANG Dongying,TANG Dazhen,GOU Mingfu,et al. Oil–shale geology of Lucaogou Formation in Fukang area on southern margin of Junggar Basin[J]. China Petroleum Exploration,2007(6):18−22. DOI: 10.3969/j.issn.1672-7703.2007.06.004
[42] 付勇,周文喜,王华建,等. 黔北下寒武统黑色岩系的沉积环境与地球化学响应[J]. 地质学报,2021,95(2):536−548. FU Yong,ZHOU Wenxi,WANG Huajian,et al. The relationship between environment and geochemical characteristics of black rock series of Lower Cambrian in northern Guizhou[J]. Acta Geologica Sinica,2021,95(2):536−548.
[43] KUYPERS M M M, PANCOST R D, NIJENHUIS I A, et al. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic Basin during the late Cenomanian oceanic anoxic event[J]. Paleoceanography and Paleoclimatology, 2002, 17(4): 3-1–3-13.
[44] TRUBOVILLARD N, ALGEO T J, BAUDIN F, et al. Analysis of marine environmental conditions based on Molybdenum−Uranium covariation: Applications to Mesozoic Paleoceanography[J]. Chemical Geology, 2021, 324/325(9): 46–58.
[45] 杨季华,罗重光,杜胜江,等. 高黏土含量沉积岩古环境指标适用性讨论[J]. 矿物学报,2020,40(6):723−733. YANG Jihua,LUO Chongguang,DU Shengjiang,et al. Discussion on the applicability of paleoenvironmental index for sedimentary rocks with high clay content[J]. Acta Mineralogica Sinica,2020,40(6):723−733.
[46] 苗耀,桑树勋,林会喜,等. 渤海湾盆地石炭–二叠系微量元素特征及其指相意义[J]. 沉积与特提斯地质,2007,27(4):27−32. DOI: 10.3969/j.issn.1009-3850.2007.04.006 MIAO Yao,SANG Shuxun,LIN Huixi,et al. Trace element signatures of the Carboniferous–Permian deposits in the Bohai Gulf Basin and their facies significance[J]. Sedimentary Geology and Tethyan Geology,2007,27(4):27−32. DOI: 10.3969/j.issn.1009-3850.2007.04.006
[47] 王子玉,程安进,卓二军,等. 太湖全新世沉积物的古盐度指标及其环境意义[J]. 地层学杂志,1994,18(3):196−202. WANG Ziyu,CHENG Anjin,ZHUO Erjun,et al. Paleosalinity indicators in Holocene sediments of Taihu Lake and its environmental significance[J]. Journal of Stratigraphy,1994,18(3):196−202.
[48] 许中杰,程日辉,王嘹亮,等. 南海北部陆缘早侏罗世海平面变化的古盐度记录[J]. 沉积学报,2009,27(6):1147−1154. XU Zhongjie,CHENG Rihui,WANG Liaoliang,et al. Paleosalinity records to sea level change of the northern margin of the South China Sea in Early Jurassic[J]. Acta Sedimentologica Sinica,2009,27(6):1147−1154.
[49] 孟庆涛,李金国,刘招君,等. 茂名盆地羊角含矿区始新统油柑窝组油页岩有机地球化学特征及沉积环境[J]. 吉林大学学报(地球科学版),2020,50(2):356−367. MENG Qingtao,LI Jinguo,LIU Zhaojun,et al. Organic geochemical characteristics and depositional environment of oil shale of Eocene of Paleocene Youganwo Formation in Yangjiao mining area of Maoming Basin[J]. Journal of Jilin University (Earth Science Edition),2020,50(2):356−367.
[50] CHEN Chao,MU Chuanlong,ZHOU Kenken,et al. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician–Early Silurian black shale in the Upper Yangtze Basin,South China[J]. Marine and Petroleum Geology,2016,76(9):159−175.
[51] 郑玉龙,王佰长,王占国,等. 松辽盆地嫩江组二段油页岩元素地球化学特征[J]. 地质论评,2015,61(增刊1):983−985. ZHENG Yulong,WANG Baizhang,WANG Zhanguo,et al. Elemental geochemical characteristics of oil shale in the second member of the Nenjiang Formation,Songliao Basin[J]. Geological Review,2015,61(Sup.1):983−985.
[52] 金章东,张恩楼. 湖泊沉积物Rb/Sr比值的古气候含义[J]. 科学技术与工程,2002,2(3):20−22. DOI: 10.3969/j.issn.1671-1815.2002.03.009 JIN Zhangdong,ZHANG Enlou. Paleoclimate implication of Rb/Sr ratios from lake sediments[J]. Science Technology and Engineering,2002,2(3):20−22. DOI: 10.3969/j.issn.1671-1815.2002.03.009
[53] 关有志. 科尔沁沙地的元素、粘土矿物与沉积环境[J]. 中国沙漠,1992,12(1):9−15. GUAN Youzhi. The element,clay mineral and depositional environment in Horqin Sand Land[J]. Journal of Desert Research,1992,12(1):9−15.
[54] MORADI A V,SARI A,AKKAYA P. Geochemistry of the Miocene oil shale (Hancili Formation) in the Cankiri–Corum Basin,Central Turkey:Implications for Paleoclimate conditions,source–area weathering,provenance and tectonic setting[J]. Sedimentary Geology,2016,341(7):289−303.
[55] 胡涛,庞雄奇,姜福杰,等. 陆相断陷咸化湖盆有机质差异富集因素探讨:以东濮凹陷古近系沙三段泥页岩为例[J]. 沉积学报,2021,39(1):140−152. HU Tao,PANG Xiongqi,JIANG Fujie,et al. Factors controlling differential enrichment of organic matter in Saline Lacustrine Rift Basin:A case study of Third member Shahejie Formation in Dongpu depression[J]. Acta Sedimentologica Sinica,2021,39(1):140−152.
[56] 郑一丁,雷裕红,张立强,等. 鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J]. 天然气地球科学,2015,26(7):1395−1404. ZHENG Yiding,LEI Yuhong,ZHANG Liqiang,et al. Characteristics of element geochemistry and paleo sedimentary environment evolution of Zhangjiatan shale in the southeast of Ordos Basin and its geological significance for oil and gas[J]. Natural Gas Geoscience,2015,26(7):1395−1404.
[57] DAS B K,HAAKE B G. Geochemistry of Rewalsar Lake sediment,Lesser Himalaya,India:Implications for source−area weathering,provenance and tectonic setting[J]. Geosciences Journal,2003,7(4):299−312. DOI: 10.1007/BF02919560
[58] 徐银波, 李锋, 张家强, 等. 三塘湖盆地石头梅地区二叠系芦草沟组有机质富集特征[J]. 地质学报, 2022: 1–13 [2022-10-15]. https://doi.org/10.19762/j.cnki.dizhixuebao.2022280. XU Yinbo, LI Feng, ZHANG Jiaqiang, et al. Enrichment characteristics of organic matter in Permian Lucaogou Formation in Shitoumei area, Santanghu Basin[J]. Acta Geologica Sinica, 2022: 1−13 [2022-10-15]. https://doi.org/10.19762/j.cnki.dizhixuebao.2022280.
[59] 谭昭昭,王伟明,李文浩,等. 泌阳凹陷核桃园组三段富有机质泥页岩形成环境及发育模式[J]. 沉积学报,2018,36(6):1256−1266. TAN Zhaozhao,WANG Weiming,LI Wenhao,et al. The sedimentary environment and deposition mode of organic–rich mudstone from the Third member of Hetaoyuan Formation in the Biyang depression[J]. Acta Sedimentologica Sinica,2018,36(6):1256−1266.
[60] ZHANG Rui,JIANG Tao,TIAN Yuan,et al. Volcanic ash stimulates growth of marine autotrophic and heterotrophic microorganisms[J]. Geology,2017,45(8):679−682.
[61] LECKIE R M, BRALOWER T J, CASHMAN R. Oceanic Anoxic events and plankton evolution: Biotic response to tectonic forcing during the Mid–Cretaceous[J]. Paleoceanography and Paleoclimatology, 2002, 17(3): 13-1–13-29.
[62] HOU Haihai, SHAO Longyi, LI Yonghong, et al. Effect of paleoclimate and paleoenvironment on organic matter accumulation in lacustrine shale: Constraints from lithofacies and element geochemistry in the northern Qaidam Basin, NW China[J]. Journal of Petroleum Science and Engineering, 2022, 208(PartA): 109350.
[63] YANG Wei,ZUO Rusi,CHEN Dongxia,et al. Climate and tectonic−driven deposition of sandwiched continental shale units:New insights from petrology,geochemistry,and integrated provenance analyses (the Western Sichuan subsiding Basin,southwest China)[J]. International Journal of Coal Geology,2019,211:103227. DOI: 10.1016/j.coal.2019.103227
[64] 蔡利飘. 敦煌盆地五墩凹陷侏罗系沉积特征研究[D]. 青岛: 中国石油大学(华东), 2017. CAI Lipiao. Study on sedimentary characteristics of Jurassic in Wudun Sag of Dunhuang Basin[D]. Qingdao: China University of Petroleum, 2017.
[65] 刘鹏飞. 敦煌盆地侏罗系页岩气成藏条件研究[D]. 西安: 长安大学, 2018. LIU Pengfei. The study on gas reservoir forming conditions of Permian shale in Dunhuang Basin[D]. Xi’an: Chang’an University, 2018.
-
期刊类型引用(20)
1. 杨科,于祥,何祥,侯永强,张连富. 不同含水状态矸石胶结充填体能量演化与损伤特性研究. 岩土力学. 2025(01): 26-42 . 百度学术
2. 王波,周俊丽,翟龙虎,张超,王家乐,宋杰. 风积沙-萘系减水剂充填材料流动性测试研究. 兵器材料科学与工程. 2025(01): 94-100 . 百度学术
3. 董书宁,于树江,董兴玲,张步勤,郭小铭,王晓东,王凯,朱世彬,武博强,刘磊. 煤基固废与高盐废水“固液协同”充填处置关键技术. 煤田地质与勘探. 2025(01): 163-173 . 本站查看
4. 于祥,杨科,何祥,侯永强,文志强,张连富. 饱和浸水过程矸石胶结充填体强度及损伤特征. 煤田地质与勘探. 2025(02): 147-159 . 本站查看
5. 程强强,汪浩东,阴琪翔,赵明翔,姚越,闫宝峰. 玻璃纤维改性煤基固废胶结充填材料性能研究. 矿业安全与环保. 2024(01): 161-167+174 . 百度学术
6. 周天璧,蒋波,罗正东. 碱激发胶凝材料在充填领域的应用及发展. 山西建筑. 2024(07): 108-111 . 百度学术
7. 黄鹏程,蔡飞飞,吴天才,赵辉,郭伟勇,梁永平,祁风华. 宁东能源化工基地燃煤电厂粉煤灰的矿物学及元素地球化学特征. 洁净煤技术. 2024(03): 145-152 . 百度学术
8. 刘浪,罗屹骁,朱梦博,苏臣,吴涛涛,王建友,杭彦龙. 建筑物下特厚煤层镁渣基全固废连采连充开采技术与实践. 煤炭科学技术. 2024(04): 83-92 . 百度学术
9. 张丽维,侯恩科,段中会,付德亮,贺丹. 基于AHP熵权TOPSIS模型的矸石充填方案评价和优选研究. 中国煤炭. 2024(05): 120-126 . 百度学术
10. 杨科,张继强,何祥,魏祯,赵新元. 多源煤基固废胶结充填体力学及变形破坏特征试验研究. 煤田地质与勘探. 2024(06): 102-114 . 本站查看
11. 郭昆明. 智能化连续长距离注浆系统的研制及现场实践. 煤矿机电. 2024(03): 1-5 . 百度学术
12. 王思云,任美嘉,周进生. 任家庄煤矿绿色充填示范工程经济社会效益评价研究. 能源科技. 2024(06): 27-30+35 . 百度学术
13. 李运红,王光炎,乔森,郭月明,刘娟,武亚磊. 全固废流态化材料充填性能研究. 人民长江. 2024(S2): 257-262 . 百度学术
14. 刘剑平,谢国帅,曹园章,陈炜旻,白晓红. 盐酸溶液环境下RM-CMK地聚合物的强度机理研究. 非金属矿. 2023(02): 9-12 . 百度学术
15. 侯典臣,郇恒恒. 工业废料氟石膏基充填材料试验研究. 煤矿现代化. 2023(04): 58-61 . 百度学术
16. 罗正东,蒋波,章本本,邓代强,李翔. 碱激发金矿粉充填材料力学性能及微观分析. 矿冶工程. 2023(04): 21-25 . 百度学术
17. 辛亚军,杨俊鹏,陈祖国,王晓鹏,任金武,吴春浩. 薄分层软顶间隔柔模承载解析与快速留巷技术. 采矿与安全工程学报. 2023(06): 1161-1176 . 百度学术
18. 周瑶,刘长友,谢志清,潘海洋. 粒径对煤矸石浆液的性能影响研究. 矿业研究与开发. 2023(12): 118-123 . 百度学术
19. 李硕森,徐青云,吴季洪. 膏体充填开采覆岩移动特征研究. 山西煤炭. 2023(04): 7-13 . 百度学术
20. 殷文文,张理群,丁丹,单士锋,陈永春,安士凯,郑刘根. 淮南潘一矿煤基固废精细化学结构及重金属生态风险评价. 煤田地质与勘探. 2023(12): 176-184 . 本站查看
其他类型引用(5)