Zhang Aimin, Liu Tianfang, Li Haishan. DETECTION OF GATEWA Y REFLECTION WAVE USING HIGH RESOLUTION 3-D SEISMIC EXPLORATION[J]. COAL GEOLOGY & EXPLORATION, 1995, 23(5): 48-53.
Citation: Zhang Aimin, Liu Tianfang, Li Haishan. DETECTION OF GATEWA Y REFLECTION WAVE USING HIGH RESOLUTION 3-D SEISMIC EXPLORATION[J]. COAL GEOLOGY & EXPLORATION, 1995, 23(5): 48-53.

DETECTION OF GATEWA Y REFLECTION WAVE USING HIGH RESOLUTION 3-D SEISMIC EXPLORATION

More Information
  • Received Date: March 15, 1995
  • Available Online: April 07, 2023
  • High resolution 3-D seismic exploration in panel clearly detected the gateways that depth of burial of 460 m, section of 3.2 m× 3.8 m, at a distance of 50 m. It has not been reported at home and abroad. this paper expounds the detection of forming reflection waves by gateways-the particular geological bodies and their display features in 3-D data bodies. From which several pieces of useful enlightenment are resulted.
  • Related Articles

    [1]WANG Hui, KANG Gaofeng, XIAN Mailong, WANG Shaofei, PAN Chunjun, MA Junlong, FAN Yuhai, ZHANG Shaobin. The reasons for thickness changes of seam No.4 at medium depth in Chenghe mining area[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(5): 16-20. DOI: 10.3969/j.issn.1001-1986.2012.05.004
    [2]GAO Rongbin, HE Zhiqiang, LAI Zhengwu, LÜ Baomin, ZHANG Junwei, LIU Shizhong, WANG Enying. Variation of coal seam thickness and control factors in Xin'an coal field in western Henan[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(4): 13-15,19. DOI: 10.3969/j.issn.1001-1986.2011.04.004
    [3]LI Hong, LU Jin-ying, WANG Hong-you. Exploration logging-constrained inversion technique predicting coal-thickness[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(1): 74-77.
    [4]LIU Heng-qiu, LIU Qin-fu, PENG Su-ping, TAN Ru-jiao, FU Zheng. Evolvement characteristic of sand bodies in the fourth coal-bearing interval and its control on coal thickness, Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(1): 7-10.
    [5]CUI Ruo-fei, ZHONG Qi-tao, LI Jin-ping. Coal thickness interpretation prediction using seismic data[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(3): 54-57.
    [6]HAN Wan-lin, ZHANG You-di, LI Liang. Forecasting coal layer thickness by BP neural network from multiple seismic parameters[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(4): 53-54.
    [7]ZHANG Falin. BEDDING SLIPPING STRUCTURES IN YUELIANGTIAN COAL MINE AND THEIR INFLUENCE TO COAL SEAM THICKNESS[J]. COAL GEOLOGY & EXPLORATION, 2000, 28(5): 17-20.
    [8]Fan Qingwu. RESULTS COMPARISON BETWEEN EXPLORATION AND MINING IN YANZHOU AND JINING COALFIELD[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(S1): 18-19.
    [9]CAO Dai-yong, LIU Qin-fu, PENG Su-ping, HE Ri-xing, MU Xuan-she, SHI Xian-zhong, ZHANG Shou-ren. QUANTITATIVE ANALYSIS ON THE THICKNESS VARIATION OF NO.2-1 COAL SEAM IN CHAOHUA MINE FIELD[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(5): 28-32.
    [10]Liu Jianhua, Liu Tianfang. FILTERING IMPROVING THE ACCURACY OF PREDICTED COAL SEAM THICKNESS[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(5): 46-50.

Catalog

    Article Metrics

    Article views (40) PDF downloads (2) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return