LI Tao, HU Jin-sheng, XIAO Hong, REN Xiu-wen. Experimental study on effect of acetic acid and carbonic acid on clay’s geotechnical behaviors[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(6): 46-48.
Citation: LI Tao, HU Jin-sheng, XIAO Hong, REN Xiu-wen. Experimental study on effect of acetic acid and carbonic acid on clay’s geotechnical behaviors[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(6): 46-48.

Experimental study on effect of acetic acid and carbonic acid on clay’s geotechnical behaviors

More Information
  • Received Date: December 15, 2007
  • Available Online: March 12, 2023
  • The mechanism study is performed based on indoor geotechnical experiment by injecting acetic acid and carbonic acid with different concentrasion to soil samples and according to the results of the soil mechanics and the correlative theory.The conclusions are that by changing thickness of electric double layer of soil grain diffusion and adsorbability of polar water molecular, the concentration of acetate or carbonic acid makes soil particles ag-glomerate or disperse, and result in variation of plasticity and permeability of the compacted clay;By dissolving aluminium in clay mineral, acetic acid increases the clay permeability and plasticity index;There is a chemical re-action of the carbonic acid with the metal cation which can generate insoluble carbonates, resulting in decrease of the clay liner permeability.It gives evidences for the clay liner stability.
  • Related Articles

    [1]LI Shuguang, WANG Hongna, XU Borui, ZHEN Huaibin, WANG Chengwang, YUAN Pu. Influencing factors on gas production effect of acid fractured CBM Wells in deep coal seam of Daning-Jixian Block[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(3): 165-172. DOI: 10.12363/issn.1001-1986.21.12.0800
    [2]FAN Yao. Mechanism and applicability of increasing coalbed methane well production by pre-positioned acid fracturing[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 153-161. DOI: 10.3969/j.issn.1001-1986.2021.04.018
    [3]ZHOU Bin, ZHANG Dongming, XU Jiang, CHENG Liang, LI Jiaxin. Corrosion and degradation of feldspar sandstone in acidic environment[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 165-173. DOI: 10.3969/j.issn.1001-1986.2020.04.023
    [4]SHAO Dongmei. Influence of temperature on dissolution rate in Ordovician carbonate rock in different water flow rate[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(3): 62-65. DOI: 10.3969/j.issn.1001-1986.2012.03.015
    [5]HUANG Ji-xin, PENG Shi-mi, SONG Lai-ming. Preliminary study on palaeokarst of lower Paleozoic carbonate buried hill in Chezhen area[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(2): 1-4.
    [6]SONG Lai-ming, PENG Shi-mi, MU Li-hua, LI Guo-rong, HUANG Shu-wang. Methods of carbonate paleokarst investigation in the oil and gas exploitation[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(3): 15-18.
    [7]Liu Qinfu, Yang Xiaojie, Ding Shuli. SIMULATION EXPERIMENTS FOR THE INFLUENCE OF ORGANIC ACID ON THE FORMATION OF KAOLINITE[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(2): 6-9.
    [8]Zhang Yongxiang, Xue Yuqun, Cao Yuqing. RESEARCH OF THE REACTION-TRANSPORTATION MODEL CONTROLLED UNDER THE DISSOLUTION AND PRECIPITATION OF CARBONATE[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(5): 32-36.
    [9]FENG Bao-hua. THE CHARACTERISTICS OF NATURAL GAMMA-RAY LOGGING CURVE IN ACID VOLCANO-SEDIMENTARY CLAYROCK[J]. COAL GEOLOGY & EXPLORATION, 1994, 22(4): 7-11.
    [10]Application of Liquid Carbon Di—oxide and Acid to Water Well Washing[J]. COAL GEOLOGY & EXPLORATION, 1984, 12(4): 41-44.
  • Cited by

    Periodical cited type(25)

    1. 郑剑,陈陆望,张杰,张苗,郑忻,胡永胜. 贝叶斯突水水源判别与反向水文地球化学模拟的含水层水力分析. 合肥工业大学学报(自然科学版). 2025(02): 203-211 .
    2. 蒋欣静,李仲夏,万军伟,成建梅,王志明,王玲,王铭. 柳家村隧洞水化学特征分析及涌水水源判别方法研究. 安全与环境工程. 2024(04): 158-169 .
    3. 张强,胡志伟,王毛毛,周成号. 基于主成分自组织神经网络法的测井曲线分层技术. 地质与勘探. 2024(05): 1013-1020 .
    4. 施龙青,曲兴玥,韩进. 黄土梁峁地貌矿井水水质时空变异评估与关键控制因子水源识别. 煤田地质与勘探. 2023(02): 195-206 . 本站查看
    5. 陈陆望,胡永胜,张杰,张苗,郑剑,郑忻,张媛媛,蔡欣悦,武明辉. 华北型煤田水文地球化学勘探关键技术研究进展. 煤田地质与勘探. 2023(02): 207-219 . 本站查看
    6. 赵世毫,高林,陈原望,蒋明,向天麟,申业兴,许帅. 基于水化学特征分析的近地表井壁涌水来源识别技术. 矿业研究与开发. 2023(11): 150-156 .
    7. 张苗,陈陆望,姚多喜,张杰. 宿县矿区石炭系太灰地下水化学特征及水岩相互作用. 合肥工业大学学报(自然科学版). 2022(03): 396-405 .
    8. 苏玮,姜春露,查君珍,郑刘根,谢华东,黄文迪,陈园平. 基于客观组合权-改进集对分析模型的矿井突水水源识别. 煤炭科学技术. 2022(04): 156-164 .
    9. 张胜军,丁亚恒,姜春露,李明,郑刘根. 基于水化学和氯同位素的煤矿矿井水来源识别与解析. 煤炭工程. 2022(06): 123-127 .
    10. 毛志勇,崔鹏杰,黄春娟,韩榕月. KPCA-CS-SVM下的矿井突水水源判别模型. 辽宁工程技术大学学报(自然科学版). 2021(02): 104-111 .
    11. 满孝全,魏久传,谢道雷,谢春雷. 基于水化学特征分析的突水水源判别方法. 中国科技论文. 2021(01): 76-81+90 .
    12. 朱敬忠,李凌,杨森. 基于因子分析的突水水源类型判别的研究. 矿业安全与环保. 2021(02): 87-91+96 .
    13. 施亚丽,吴基文,翟晓荣,王广涛,洪荒,毕尧山. 采动影响下皖北恒源煤矿八含水化学特征研究. 安徽理工大学学报(自然科学版). 2021(01): 31-40 .
    14. 苏俏俏,黄平华,丁风帆,胡永胜,郜鸿飞. 基于Piper-PCA-Fisher模型的矿井突水水源识别. 能源与环保. 2021(10): 122-127 .
    15. 李凌,胡友彪,刘瑜,琚棋定. 基于多元统计与Bayes判别模型的水源判别. 安徽理工大学学报(自然科学版). 2021(06): 25-31 .
    16. 刘小贺. 主成分-距离水质识别水源模型主成分的选取. 地下水. 2020(02): 23-26 .
    17. 姜子豪,胡友彪,琚棋定,周露,张淑莹. 矿井突水水源判别方法. 工矿自动化. 2020(04): 28-33 .
    18. 马济国,姜春露,朱赛君,谢毫,毕波,郑刘根. 基于主成分分析的潘谢矿区突水水源Fisher判别模型. 煤炭技术. 2020(09): 132-134 .
    19. 张靖苑. 基于主成分分析和随机配置网络的矿井突水水源判别方法研究. 煤炭工程. 2020(S2): 101-104 .
    20. 题正义,张峰,秦洪岩,朱志洁. 基于板壳和断裂力学理论的上覆采空区积水危险性判定技术. 煤田地质与勘探. 2019(01): 138-143 . 本站查看
    21. 刘国伟,马凤山,郭捷,杜云龙,侯成录,李威. 多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例. 黄金科学技术. 2019(02): 207-215 .
    22. 董东林,李祥,林刚,卞建玲,曹成龙,吴恒. 突水水源的独立性权–模糊可变理论识别模型. 煤田地质与勘探. 2019(05): 48-53 . 本站查看
    23. 张宇,彭琪,曾开帅,唐金平,何文君,张强. Bayes判别理论在陇西黄土高原地区地下水化学分类中的应用. 甘肃水利水电技术. 2019(10): 1-5 .
    24. 邓松松. 超化煤矿突水灾害地质条件分析及防治措施. 能源与节能. 2018(06): 38-39 .
    25. 琚棋定,胡友彪,张淑莹. 基于主成分分析与贝叶斯判别法的矿井突水水源识别方法研究. 煤炭工程. 2018(12): 90-94 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (39) PDF downloads (3) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return