Citation: | WANG Zhenzhi, FU Xuehai, PAN Jienan, JIN Yi, WANG Haichao. A Study on the Factors Influencing the Production of Deep Coalbed Methane[J]. COAL GEOLOGY & EXPLORATION. |
[1] |
申建, 秦勇, 傅雪海, 等. 深部煤层气成藏条件特殊性及其临界深度探讨[J]. 天然气地球科学, 2014, 25(09): 1470-1476.
SHEN Jian, QIN Yong, FU Xuehai, et al. Properties of deep coalbed methane reservoir-forming conditions and critical depth discussion[J]. Natural Gas Geoscience, 2014, 25(09): 1470-1476.
|
[2] |
WANG Haichao, FU Xuehai, ZHANG Xiaoyang, et al. Source, age, and evolution of coal measures water in central-south Qinshui basin, China[J]. Energy & Fuels, 2018, 32(7): 7358-7373.
|
[3] |
谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11): 2161-2178.
XIE Heping, GAO Feng, JU Yang. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161-2178.
|
[4] |
傅雪海, 秦勇, 权彪, 等. 中煤级煤吸附甲烷的物理模拟与数值模拟研究[J]. 地质学报, 2008(10): 1368-1371.
FU Xuehai, Qin Yong, Quan Biao, et al. Study of physical and numerical simulations of adsorption methane content on middle-rank coal[J]. Acta Geologica Sinica, 2008(10): 1368-1371.
|
[5] |
陈刚, 李五忠. 鄂尔多斯盆地深部煤层气吸附能力的影响因素及规律[J]. 天然气工业, 2011,31(10):47-49.
CHEN Gang, LI Wuzhong. Influencing factors and patterns of CBM adsorption capacity in the deep Ordos Basin[J]. Natural Gas Industry, 2011, 31(10): 47-49.
|
[6] |
李松, 汤达祯, 许浩, 等. 深部煤层气储层地质研究进展[J]. 地学前缘, 2016, 23(03): 10-16.
LI Song, TANG Dazhen, XU Hao, et al. Progress in geological researches on the deep coalbed methane reservoirs[J]. Earth Science Frontiers, 2016, 23(03): 10-16.
|
[7] |
MENG Zhaoping, ZHANG Jincai, WANG Rui. In-situ stress, pore pressure and stress-dependent permeability in the southern Qinshui basin[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1): 122-131.
|
[8] |
杨永杰, 宋扬, 陈绍杰, 等. 煤岩强度离散性及三轴压缩试验研究[J]. 岩土力学, 2006(10): 1763-1766.
YANG Yongjie, SONG Yang, CHEN Shaojie, et al. Experimental study on strength discreteness and triaxial compression of coal[J]. Rock and Soil Mechanics, 2006, (10): 1763-1766.
|
[9] |
李勇, 徐立富, 张守仁, 等. 深煤层含气系统差异及开发对策[J]. 煤炭学报, 2023, 48(02): 900-917.
LI Yong, XU Lifu, ZHANG Shouren, et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society, 2023, 48(02): 900-917.
|
[10] |
李国富, 侯泉林. 沁水盆地南部煤层气井排采动态过程与差异性[J]. 煤炭学报, 2012, 37(05): 798-803.
LI Guofu, HOU Quanlin. Dynamic process and difference of coalbed methane wells production in southern Qinshui Basin[J]. Journal of China Coal Society, 2012, 37(5): 798-803.
|
[11] |
叶建平, 张健, 王赞惟. 沁南潘河煤层气田生产特征及其控制因素[J]. 天然气工业, 2011, 31(05): 28-30+114-115.
YE Jianping, ZHANG Jian, WANG Zanwei. Production performance and its controlling factors in the Panhe CMB Gas Field, southern Qinshui Basin[J]. Natural Gas Industry, 2011, 31(05): 28-30+114-115.
|
[12] |
徐凤银, 聂志宏, 孙伟, 等. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系[J]. 煤炭学报, 2024, 49(01): 528-544.
XU Fengyin, NIE Zhihong, SUN Wei, et al. Theoretical and technological system for Highly efficient development of deep coalbed methane in the Eastern edge of Erdos Basin[J]. Journal of China Coal Society, 2024, 49(01): 528-544.
|
[13] |
聂志宏, 时小松, 孙伟, 等. 大宁-吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探, 2022: 1-8.
NIE Zhihong, SHI Xiaosong, SUN Wei, et al. Production Characteristics of Deep Coalbed Methane Gas Reservoirs in Daning-Jixian Block and Its Development Technology Countermeasures[J]. Coal Geology & Exploration, 2022: 1-8.
|
[14] |
程远平, 雷杨. 构造煤和煤与瓦斯突出关系的研究. 煤炭学报. 2021;46(1):180-98. CHENG Yuanping, LEI Yang. Causality between tectonic coal and coal and gas outbursts[J]. Journal of China Coal Society, 2021, 46(01): 180-198.
|
[15] |
叶桢妮, 侯恩科, 段中会等. 不同煤体结构煤的孔隙-裂隙分形特征及其对渗透性的影响[J]. 煤田地质与勘探, 2019, 47(05): 70-78.
YE Zhenni, HOU Enke, DUAN Zhonghui, et al. The pore fracture fractal characteristics of coal with different coal body structures and their impact on permeability[J]. Coalfield Geology and Exploration, 2019, 47(05): 70-78.
|
[16] |
曹明亮, 康永尚, 邓泽等. 煤阶和构造应力强度对煤岩力学性质的影响作用[J]. 煤炭科学技术, 2019, 47(12): 45-55.
CAO Mingliang, KANG Yongshang, DENG Ze, et al. Influence of coal rank and tectonic stress intensity on mechanical propertiesof coal rock[J]. Coal Science and Technology, 2019, 47(12): 45-55.
|
[17] |
蒋静宇, 史孝宁, 程远平等. 急速卸压条件下构造煤体应力释放规律试验研究[J/OL]. 采矿与安全工程学报: 1-12.
JIANG Jingyu, SHI Xiaoning, CHENG Yuanping, et al. Experimental Study on Stress Release Law of Structural Coal Body under Rapid Relief Conditions[J/OL]. Journal of Mining and Safety Engineering: 1-12.
|
[18] |
吕闰生, 彭苏萍, 徐延勇. 含瓦斯煤体渗透率与煤体结构关系的实验[J]. 重庆大学学报, 2012, 35(07): 114-118+132.
LV Runsheng, PENG Suping, XU Yanyong. Experiments on the relationship between permeability of gas-bearing coal and coal body structure[J]. Journal of Chongqing University, 2012, 35(07): 114-118+132.
|
[19] |
郭红玉, 苏现波, 夏大平等. 煤储层渗透率与地质强度指标的关系研究及意义[J]. 煤炭学报, 2010, 35(08): 1319-1322.
GUO Hongyu, SU Xianbo, XIA Daping, et al. Relationship of the permeability and geological strength index (Gsl) of coal reservoir and its significance[J]. Journal of China Coal Society, 2010, 35(08): 1319-1322.
|
[20] |
FU Xuehai, QIN Yong, WANG Geoff G X, et al. Evaluation of coal structure and permeability with the aid of geophysical logging technology[J]. Fuel, 2009, 88(11): 2278-2285.
|
[21] |
BUSSE J, DE DREUZY J R, GALINDO Torres S, et al. Image processing-based characterization of coal cleat networks[J]. International Journal of Coal Geology, 2017, 169: 1-21.
|
[22] |
SCOTT Andrew R. Hydrogeologic factors affecting gas content distribution in coal beds[J]. International Journal of Coal Geology, 2002, 50(1): 363-387.
|
[23] |
WANG Zhenzhi, PAN Jienan, HOU Quanlin, et al. Changes in the anisotropic permeability of low-rank coal under varying effective stress in fukang mining area, China[J]. Fuel, 2018, 234: 1481-1497.
|
[24] |
KANG Junqiang, FU Xuehai, GAO Lin, et al. Production profile characteristics of large dip angle coal reservoir and its impact on coalbed methane production: a case study on the fukang west block, southern junggar basin, china[J]. Journal of Petroleum Science and Engineering, 2018, 171: 99-114.
|
[25] |
WANG Zhenzhi, FU Xuehai, PAN Jienan, et al. The fracture anisotropic evolution of different ranking coals in shanxi province, China[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106281.
|
[26] |
WANG Zhenzhi, PAN Jienan, HOU Quanlin, et al. Anisotropic characteristics of low-rank coal fractures in the fukang mining area, China[J]. Fuel, 2018, 211: 182-193.
|
[27] |
KOENIG P A, STUBBS P B. Interference testing of a coal-bed methane reservoir: SPE Unconventional Gas Technology Symposium[C], Louisville, Kentucky, 1986.
|
[28] |
WENIGER S, WENIGER P, LITTKE R. Characterizing coal cleats from optical measurements for CBM evaluation[J]. International Journal of Coal Geology, 2016, 154-155: 176-192.
|
[29] |
LIU Shimin, WANG Yi, HARPALANI Satya. Anisotropy characteristics of coal shrinkage/swelling and its impact on coal permeability evolution with CO2 injection[J]. Greenhouse Gases: Science and Technology, 2016, 5(6): 615-632.
|
[30] |
ANGGARA Ferian, SASAKI Kyuro, RODRIGUES Sandra, et al. The effect of megascopic texture on swelling of a low rank coal in supercritical carbon dioxide[J]. International Journal of Coal Geology, 2014, 125: 45-56.
|
[31] |
杨新乐, 张永利. 气固耦合作用下温度对煤瓦斯渗透率影响规律的实验研究[J]. 地质力学学报, 2008, 14(04): 374-380.
YANG Xinle, ZHANG Yongli. Experimental study of effect of temperature on coal gas permeability under gas-solid coupling[J]. Journal of Geomechanics, 2008, 14(04): 374-380.
|
[32] |
胡耀青, 赵阳升, 杨栋, 等. 温度对褐煤渗透特性影响的试验研究[J]. 岩石力学与工程学报, 2010, 29(8): 1585-1590.
HU Yaoqing, ZHAO Yangsheng, YANG Dong, et al. Experimental study of effect of temperature on permeability characteristics of lignite[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1585-1590.
|
[33] |
谢建林, 赵阳升. 随温度升高煤岩体渗透率减小或波动变化的细观机制[J]. 岩石力学与工程学报, 2017, 36(3): 543-551.
XIE Jianlin, ZHAO Yangsheng. Meso-mechanism of permeability decrease or fluctuation of coal and rock with the temperature increase[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 543-551.
|
[34] |
夏同强, 王有湃, 周福宝, 等. 煤岩体应力-渗流-温度多过程耦合试验系统[J]. 中国矿业大学学报, 2021, 50(02): 205-213.
XIA Tongqiang, WANG Youpai, ZHOU Fubao, et al. The stress-seepage temperature multi-process coupling test system for coal and rock mass[J]. Journal of China University of Mining & Technology, 2021, 50(02): 205-213.
|
[35] |
李宝林, 魏国营. 不同温度煤裂隙流动优势性的热流固耦合数值模拟[J]. 煤炭科学技术, 2020, 48(11): 141-146.
LI Baolin, WEI Guoying. Numerical simulation of thermal-fluid-solid coupling of the flow dominance of coal under different temperature conditions[J]. Coal Science and Technology, 2020, 48(11): 141-146.
|
[36] |
秦勇, 申建, 王宝文, 等. 深部煤层气成藏效应及其耦合关系[J]. 石油学报, 2012, 33(01): 48-54.
QIN Yong, SHEN Jian, WANG Baowen, et al. Accumulation effects and coupling relationship of deep coalbed methane[J]. Acta Petrolei Sinica, 2012, 33(01): 48-54.
|
[37] |
丁宝成, 李佳芮, 张秀平. 温度、应力对含瓦斯煤渗透特性影响的实验研究[J]. 世界科技研究与发展, 2015, 37(04): 364-367.
DING Baocheng, LI Jiarui, ZHANG Xiuping. Experimental Study on Permeability Characteristics of Coal Containing Gas Influenced by Temperature and Stress[J]. World Sci-Tech R & D, 2015, 37(04): 364-367.
|
[38] |
QIN Yong, MOORE Tim A, SHEN Jian, et al. Resources and geology of coalbed methane in China: a review[J]. International Geology Review, 2018; 60(5-6): 777-812.
|
[39] |
刘大锰, 周三栋, 蔡益栋等. 地应力对煤储层渗透性影响及其控制机理研究[J]. 煤炭科学技术, 2017, 45(06): 1-8+23.
LIU Daman, ZHOU Sandong, CAI Yidong, et al. Study on effect of geo-stress on coal permeability and its controlling mechanism[J]. Coal Science and Technology, 2017, 45(06): 1-8+23.
|
[40] |
周德华, 陈刚, 陈贞龙等. 中国深层煤层气勘探开发进展、关键评价参数与前景展望[J]. 天然气工业, 2022, 42(06): 43-51.
ZHOU Dehua, CHEN Gang, CHEN Zhenlong, et al. Exploration and development progress, key evaluation parameters and prospect of deep CBM in China[J]. Natural Gas Industry, 2022, 42(06): 43-51.
|
[41] |
段品佳, 王芝银, 翟雨阳, 等. 煤层气排采初期阶段合理降压速率的研究[J]. 煤炭学报, 2011, 036(010): 1689-1692.
DUAN Pinjia, WANG Zhiyin, ZHAI Yuyang, et al., Research on reasonable depressurization rate in initial stage of exploitation to coal bed methane[J]. Journal of China Coal Society, 2011, 036(010): 1689-1692.
|
[42] |
李金平, 潘军, 李勇, 等. 基于流动物质平衡理论的煤层气井定量化排采新方法[J]. 天然气工业, 2023, 43(06): 87-95.
LI Jinping, PAN Jun, LI Yong, et al. A new CBM well quantitative production method based on the flow material balance theory[J]. Natural Gas Industry, 2023, 43(06): 87-95.
|
[43] |
伊永祥, 唐书恒, 张松航, 等. 沁水盆地柿庄南区块煤层气井储层压降类型及排采控制分析[J]. 煤田地质与勘探, 2019, 47(05): 118-126.
YI Yongxiang, TANG Shuheng, ZHANG Songhang, et al. Analysis on the type of reserve pressure drop and drainage control of coalbed metal well in the southern block of Shizhuang[J]. Coalfield Geology and Exploration, 2019, 47(05): 118-126.
|
[44] |
张遂安, 曹立虎, 杜彩霞. 煤层气井产气机理及排采控压控粉研究[J]. 煤炭学报, 2014(9): 5. ZHANG Suian, CAO Lihu, DU Caixia. Study on CBM production mechanism and control theory of bottom-hole pressure and coal fines during CBM well production, Journal of China Coal Society, 2014(9): 5.
|
[45] |
吴建发, 樊怀才, 张鉴, 等. 页岩人工裂缝应力敏感性实验研究——以川南地区龙马溪组页岩为例[J]. 天然气工业, 2022, 42(02): 71-81.
WU Jianfa, FAN Huaicai, ZHANG Jian, et al. An experimental study on stress sensitivity of hydraulic fractures in shale: A case study on Long maxi Formation shale in the southern Sichuan basin[J]. Natural Gas Industry, 2022, 42(02): 71-81.
|
[46] |
韦涛, 张争光, 牛志刚, 等. 深部与浅部煤层气储层物性及开发工程差异分析[J]. 煤炭技术, 2018, 37(02): 58-60.
WEI Tao, ZHANG Zhengguang, NIU Zhigang, et al. Analysis of physical properties and engineering difference between deep coal seam and shallow coal seam[J]. Coal Technology, 2018, 37(02): 58-60.
|
[47] |
MENG Zhaoping, LI Guoqing. Experimental research on the permeability of high-rank coal under a varying stress and its influencing factors[J]. Engineering Geology, 2013, 162: 108-117.
|
[48] |
LI Yong, TANG Dazhen, XU Hao, et al. In-situ stress distribution and its implication on coalbed methane development in Liulin area, eastern Ordos basin, China[J]. Journal of Petroleum Science and Engineering, 2014, 122: 488-496.
|
[49] |
宋昱, 姜波, 王猛等. 煤缩合芳环应力响应: 对无烟煤石墨化的启示[J]. 煤炭学报, 2022, 47(12): 4336-4351.
SONG Yu, JIANG Bo, WANG Meng, et al. Stress response of coal condensed aromatic ring: Inspiration for graphitization of anthracite[J]. Journal of China Coal Society, 2022, 47(12): 4336-4351.
|
[50] |
高向东, 王延斌, 倪小明等. 临兴地区深部煤岩力学性质及其对煤储层压裂的影响[J]. 煤炭学报, 2020, 45(S2): 912-921.
GAO Xiangdong, WANG Yanbin, NI Xiaoming, et al. Mechanical properties of deep coal and rock in Linxing area and its influences on fracturing of deep coal reservoir[J]. Journal of China Coal Society, 2020, 45(S2): 912-921.
|
[51] |
熊先钺, 闫霞, 徐凤银, 等.深部煤层气多要素耦合控制机理、解吸规律与开发效果剖析[J]. 石油学报, 2023, 44(11): 1812-1826+1853.
XIONG Xianyue, YAN Xia, XU Fengyin, et al. Analysis of multi-factor coupling control mechanism, desorption law and development effect of deep coalbed methane[J]. Acta Petrolei Sinica, 2023, 44(11): 1812-1826+1853.
|
[52] |
傅雪海, 秦勇, 叶建平, 等. 中国部分煤储层解吸特性及甲烷采收率[J]. 煤田地质与勘探, 2000(02): 19-22.
FU Xuehai, QIN Yong, YE Jianping, et al. Desorption Properies of Some Coal Reservoirs and Methane Recovery Rate in China[J]. Coal Geology & Exploration, 2000(02): 19-22.
|
[53] |
康永尚, 皇甫玉慧, 张兵, 等. 含煤盆地深层“超饱和”煤层气形成条件[J]. 石油学报, 2019, 40(12): 1426-1438.
KANG Yongshang, HUANGFU Yuhui, ZHANG Bing, et al. Formation conditions for deep oversaturated coalbed methane in coal-bearing basins[J]. Acta Petrolei Sinica, 2019, 40(12): 1426-1438.
|
[54] |
WANG Zhenzhi, FU Xuehai, HAO Ming, et al. Experimental insights into the adsorption-desorption of CH4/N2 and induced strain for medium-rank coals. J Petrol Sci Eng. 2021; 204:108705.
|
[55] |
陈向军, 程远平, 王林. 外加水分对煤中瓦斯解吸抑制作用试验研究[J]. 采矿与安全工程学报, 2013, 30(02): 296-301.
CHEN Xiangjun, CHENG Yuanping, WANG Lin. Experimental study on the introduction of injection water to the gas description of coal[J]. Journal of Mining & Safety Engineering, 2013, 30(02): 296-301.
|
[56] |
马金魁, 陈勇. 变质程度对煤样瓦斯解吸特征参数V1值的影响实验研究[J]. 煤矿安全, 2019, 50(09): 29-33.
MA Jinkui, CHEN Yong. Experimental Research on Influence of Mathematical Degree on Vi Value of Gas Destruction Characteristics of Coal Samples[J]. Safety in Coal Mines, 2019, 50(09): 29-33.
|
[57] |
李伍, 杨文斌, 战星羽, 等. 煤有机大分子碳结构石墨化机制[J]. 煤炭学报, 2023, 48(2): 855-868.
LI Wu, YANG Wenbin, ZHAN Xingyu, et al. Graphitization mechanism of coal organic macromolecular carbon structure[J]. Journal of China Coal Society, 2023, 48(2): 855-868.
|
[58] |
NIU Qinghe, CAO Liwei, SANG Shuxun, et al. Experimental study of permeability changes and its influencing factors with CO2 injection in coal[J]. Journal of Natural Gas Science and Engineering, 2019, 61: 215-225.
|
[59] |
FAN Nan, WANG Jiren, DENG Cunbao, et al. Numerical study on enhancing coalbed methane recovery by injecting N2/CO2 mixtures and its geological significance[J]. Energy Science & Engineering, 2020, 8(4): 1104-1119.
|
[60] |
降文萍, 崔永君, 钟玲文, 等. 煤中水分对煤吸附甲烷影响机理的理论研究[J]. 天然气地球科学, 2007(04): 576-579.
JIANG Wen ping,CUI Yongjun, ZHONG Lingwen, et al. Quantum Chemical Study on Coal Surface Interacting with CH4 and Water[J]. Natural Gas Geoscience, 2007(04): 576-579.
|
[61] |
LIU Yu, ZHU Yanming, LIU Shimin, Chen S, et al. Molecular structure controls on micropore evolution in coal vitrinite during coalification. Int J Coal Geol. 2018; 199:19-30.
|
[62] |
潘结南, 徐海飞. 河南省中-高煤阶构造变形煤甲烷吸附/解吸特征研究[J]. 煤炭科学技术, 2015, 43(02): 29-32.
PAN Jienan, XU Haifei. Study on Characteristics of Adsorption /Desorption of Medium and High Rank Tectonic Deformation Coals in Henan Province[J]. Coal Science and Technology, 2015, 43(02): 29-32.
|
[63] |
CHENG Guoxi, JIANG Bo, LI Ming, et al. Effects of pore structure on methane adsorption behavior of ductile tectonically deformed coals: an inspiration to coalbed methane exploitation in structurally complex area[J]. Journal of Natural Gas Science and Engineering, 2020, 74, 103083.
|
[64] |
王青青, 孟艳军, 闫涛滔, 等. 不同煤阶煤储层吸附/解吸特征差异及其对产能的影响[J]. 煤田地质与勘探, 2023, 51(05): 66-77.
WANG Qingqing, MENG Yanjun, YAN Taotao, et al. Differences in the Absorption/Desorption Characteristics of Coal Reservoirs with Different Coal Ranks and Their Effects on the Reservoir Productivity[J]. Coal Geology & Exploration, 2023, 51(05): 66-77.
|
[65] |
侯伟, 徐凤银, 张雷, 等. 煤岩类型对煤储层吸附/解吸特征影响及其实践意义——以保德区块为例[J]. 煤田地质与勘探, 2022: 1-10.
HOU Wei, XU Fengyin, ZHANG Lei, et al. Influence of coal lithotypes on adsorption /desorption characteristics in coal reservoirs and its practical significance: A case study in Baode Block[J]. Coal Geology & Exploration, 2022: 1-10.
|
[66] |
张先敏, 冯其红, 张纪远, 等. 考虑吸附滞后效应的煤层气藏物质平衡方程建立及应用[J]. 煤炭学报, 2017, 42(10): 2662-2669.
ZHANG Xianmin, FENG Qihong, ZHANG Jiyuan, et al. Establishment and Application of Material Balance Equations for Coalbed Methane Reservoirs Considering Adsorption Hysteresis Effect[J]. Journal of China Coal Society, 2017, 42(10): 2662-2669.
|
[67] |
FENG Zenchao, WANG Chen, DONG Dong, et al. Experimental Study of the Characteristic Changes of Coal Resistivity during the Gas Adsorption/Desorption Process. Adv Mater Sci Eng. 2018; 2018:1-7.
|
[68] |
王振至. 不同煤级煤N2-ECBM过程中吸附/解吸诱导应变及渗透率研究[D]. 中国矿业大学, 2021. WANG Zhenzhi. Investigation of the Adsorption/ Desorption, Induced Strain and Permeability in Different Rank Coal N2-ECBM Process[D]. China University of Mining and Technology, 2021.
|
[69] |
田永东, 武杰. 沁水盆地南部高煤阶煤储层敏感性[J]. 煤炭学报, 2014, 39(09): 1835-1839.
TIAN Yongdong, WU Jie. Sensitivity of high rank coal bed metal reserve in the southern Qinshui basin[J]. Journal of China Coal Society, 2014, 39(09): 1835-1839.
|
[70] |
SAURABH S, HARPALANI S, Singh V K. Implications of stress re-distribution and rock failure with continued gas depletion in coalbed methane reservoirs[J]. International Journal of Coal Geology, 2016, 162: 183-192.
|
[71] |
WANG Zhenzhi, DENG Ze, FU Xuehai, et al. Effects of methane saturation and nitrogen pressure on N2-enhanced coalbed methane desorption strain characteristics of medium-rank coal[J]. Natural Resources Research, 2020.
|
[72] |
傅雪海, 张小东, 韦重韬. 煤层含气量的测试、模拟与预测研究进展[J]. 中国矿业大学学报, 2021, 50(01): 13-31.
FU Xuehai, ZHANG Xiaodong, WEI Chongtao. Review of research on testing, simulation and prediction of coal bed methane content[J]. Journal of China University Mining and Technology, 2021, 50(01): 13-31.
|
[73] |
WANG Zhenzhi, FU Xuehai, PAN Jienan, et al. Effect of N2/CO2 injection and alternate injection on volume swelling/shrinkage strain of coal[J]. Energy, 2023, 275: 127377.
|
[74] |
ZHANG Baoxin, FU Xuehai, DENG Ze, et al. A comparative study on the deformation of unconfined coal during the processes of methane desorption with successively decreasing outlet pressure and with constant outlet pressure[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107531.
|
[75] |
WANG Zhenzhi, FU Xuehai, DENG Ze, et al. Investigation of adsorption-desorption, induced strains and permeability evolution during N2-ECBM recovery[J]. Natural Resources Research, 2021, 30(5): 3717-3734.
|
[76] |
PAN Jienan, LV Minmin, HOU Quanlin, et al. Coal microcrystalline structural changes related to methane adsorption/desorption[J]. Fuel, 2019, 239: 13-23.
|
[77] |
MUKHERJEE Manab, MISRA Santanu. A review of experimental research on enhanced coal bed methane (ECBM) recovery via CO2 sequestration[J]. Earth-Science Reviews, 2018, 179: 392-410.
|
[78] |
PILLALAMARRY Mallikarjun, HARPALANI Satya, LIU Shimin. Gas diffusion behavior of coal and its impact on production from coalbed methane reservoirs[J]. International Journal of Coal Geology, 2011, 86(4): 342-348.
|
[79] |
PLAZINSKI Wojciech, DZIUBA Jakub, RUDZINSKI Wladyslaw. Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity[J]. Adsorption, 2013, 19(5): 1055-1064.
|
[80] |
WANG Zhenzhi, DENG Ze, FU Xuehai, et al. Dynamic monitoring of induced strain during N2 -ECBM of coal with different gas contents[J]. Energy & Fuels, 2021, 35, 4, 3140-3149.
|
[81] |
STAIB Gregory, SAKUROVS Rochard, GRAY Evan Mac A. Dispersive diffusion of gases in coals. Part i: model development[J]. Fuel, 2015, 143: 612-619.
|
[82] |
STAIB G, SAKUROVS R, GRAY E Maca. Kinetics of coal swelling in gases: influence of gas pressure, gas type and coal type[J]. International Journal of Coal Geology, 2014, 132: 117-122.
|
[83] |
李贵红, 吴信波, 刘钰辉, 等. 沁水潘庄煤层气井全生命周期产气规律与效果[J]. 煤炭学报, 2020, 45(S2): 894-903.
LI Guihong, WU Xinbo, LIU Yuhui, et al. Full life-circle production and effect evaluation of Panzhuang coalbed methane wells in Qinshui Basin[J]. Journal of China Coal Society, 2020, 45(S2): 894-903.
|
[84] |
刘厅. 深部裂隙煤体瓦斯抽采过程中的多场耦合机制及其工程响应[D]. 中国矿业大学, 2019.
LIU Ting. Multi field coupling mechanism and engineering response in gas extraction process of deep fractured coal bodies[D]. China University of Mining and Technology, 2019.
|
[85] |
李志强, 成墙, 刘彦伟, 等. 柱状煤心瓦斯扩散模型与扩散特征实验研究[J]. 中国矿业大学学报, 2017, 46(05): 1033-1040.
LI Zhiqiang, CHENG Qiang, LIU Yanwei, et al. Research on gas diffusion model and experimental diffusion characteristic of cylindrical coal[J]. Journal of China University of Mining & Technology, 2017, 46(05): 1033-1040.
|
[86] |
刘正东. 高应力煤体物理结构演化特性对瓦斯运移影响机制研究[D]. 中国矿业大学, 2020. LIU Zhengdong. Research on Physical Structure Evolution Characteristic of Coal Mass under High Stress Condition and Its Influence on Gas Migration[D]. China University of Mining and Technology,2020.
|
[87] |
CHARRIERE Delphine, POKRYSZKA Zbigniew, BEHRA Philippe. Effect of pressure and temperature on diffusion of CO2 and CH4 into coal from the lorraine basin (France)[J]. International Journal of Coal Geology, 2010, 81(4): 373-380.
|
[88] |
WANG Yi, LIU Shimin. Estimation of pressure-dependent diffusive permeability of coal using methane diffusion coefficient: laboratory measurements and modeling[J]. Energy & Fuels, 2016, 30(11): 8968-8976.
|
[89] |
XU Hao, TANG Dazhe, ZHAO Junlong, et al. A new laboratory method for accurate measurement of the methane diffusion coefficient and its influencing factors in the coal matrix[J]. Fuel, 2015, 158: 239-247.
|
[90] |
YANG Bin, KANG Yili, YOU Lijun, et al. Measurement of the surface diffusion coefficient for adsorbed gas in the fine mesopores and micropores of shale organic matter[J]. Fuel, 2016, 181: 793-804.
|
[91] |
YUAN Weina, PAN Zhejun, LI Xiao, et al. Experimental study and modelling of methane adsorption and diffusion in shale[J]. Fuel, 2014, 117: 509-519.
|
[92] |
李祥春, 李忠备, 张良, 等. 不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响[J]. 煤炭学报, 2019, 44(S1): 142-156.
LI Xiangchun, LI Zhongbei, ZHANG Liang, et al. Pore structure characterization of various rank coals and its effect on gas desorption and diffusion[J]. Journal of China Coal Society, 2019, 44(S1): 142-156.
|
[93] |
WANG Kai, ZANG Jie, FENG Yufeng, et al. Effects of moisture on diffusion kinetics in Chinese coals during methane desorption[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 1005-1014.
|
[94] |
KARACAN C Özgen, MITCHELL Gareth D. Behavior and effect of different coal micro lithotypes during gas transport for carbon dioxide sequestration into coal seams[J]. International Journal of Coal Geology, 2003, 53(4): 201-217.
|
[95] |
李阳. 构造煤多尺度孔隙结构与瓦斯扩散分形特征[D]. 河南理工大学, 2019.
LI Yang. Multiscale pore structure of structural coal and fractal characteristics of gas diffusion[D]. Henan Polytechnic University, 2019.
|
[96] |
刘大锰, 刘正帅, 蔡益栋. 煤层气成藏机理及形成地质条件研究进展[J]. 煤炭科学技术, 2020, 48(10): 1-16.
LIU Dameng, LIU Zhengshuai, CAI Yidong. Research progress on accumulation mechanism and formation geological conditions of coalbed methane[J]. Coal Science and Technology, 2020, 48(10): 1-16.
|
[97] |
秦跃平, 徐浩, 毋凡, 等. 密度梯度驱动的煤粒瓦斯解吸扩散模型及实验验证[J]. 煤炭科学技术, 2021: 1-8.
|
[98] |
NIU Qinghe, CAO Liwen, SANG Shuxun, et al. Anisotropic adsorption swelling and permeability characteristics with injecting CO2 in coal[J]. Energy & Fuels, 2018, 32(2): 1979-1991.
|
[99] |
SAURABH Suman, HARPALANI Satya. Anisotropy of coal at various scales and its variation with sorption[J]. International Journal of Coal Geology, 2019, 201: 14-25.
|
[100] |
TAN Yuling, PAN Zhejun, LIU Jishan, et al. Experimental study of impact of anisotropy and heterogeneity on gas flow in coal. Part i: diffusion and adsorption[J]. Fuel, 2018, 232: 444-453.
|
[101] |
ZHAO Wei, CHENG Yuanping, PAN Zhejun, et al. Gas diffusion in coal particles: a review of mathematical models and their applications[J]. Fuel, 2019, 252: 77-100.
|
[102] |
房祥龙, 蔡益栋, 刘大锰. 基于低场核磁共振法的甲烷扩散特征研究[J]. 中国煤炭地质, 2021, 33(10): 31-38.
FANG Xianglong, CAI Yidong, LIU Dameng. Study on Methane Diffusion Features Based on Low-field Nuclear Magnetic Resonance (LF-NMR) Method[J], Coal Geology of China, 2021, 33(10): 31-38.
|
[103] |
王凯, 赵伟. 煤孔隙空间几何特征对瓦斯解吸曲线形态的控制机制研究进展[J]. 中国科学基金, 2021(06): 917-923.
WANG Kai, ZHAO Wei. Research progress on the control mechanism of the geometric characteristics of coal pore space on the shape of gas desorption curve[J]. Science Foundation in China, 2021(06): 917-923.
|
[104] |
MATHIAS Simon A, DENTZ Marco, LIU Qingquan. Gas diffusion in coal powders is a multi-rate process[J]. Transport in Porous Media, 2020, 131(3): 1037-1051.
|
[105] |
李相方, 石军太, 杜希瑶, 等. 煤层气藏开发降压解吸气运移机理[J]. 石油勘探与开发, 2012, 39(02): 203-213.
LI Xiangfang, SHI Juntai, DU Xiyao, et al. Transport mechanism of desorbed gas in coalbed methane reservoirs[J]. Petroleum Exploration and Development, 2012, 39(02): 203-213.
|
[106] |
徐凤银, 肖芝华, 陈东, 等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术, 2019, 47(10): 205-215.
XU Fengyin, XIAO Zhihua, CHEN Dong, et al. Current status and development direction of coalbed methane exploration technology in China[J]. Coal Science and Technology, 2019, 47(10): 205-215.
|
[107] |
刘操, 张玉贵, 贾天让, 等. 气源岩吸附试验的机理及吸附特征新认识[J]. 煤炭学报, 2019, 44(11): 3441-3452.
LIU Cao, ZHANG Yugui, JIA Tianrang, et al. New interpretation of adsorption test mechanism and adsorption law for gas source rock[J]. Journal of China Coal Society, 2019, 44(11): 3441-3452.
|
[108] |
朱汉卿, 贾爱林, 位云生, 等. 蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力[J]. 石油学报, 2018, 39(04): 391-401.
ZHU Hanqing, JIA Ailin, WEI Yunsheng, et al. Pore structure and supercritical methane sorption capacity of organic-rich shales in southern Sichuan Basin[J]. Acta Petrolei Sinica, 2018, 39(04): 391-401.
|
[109] |
董银涛, 鞠斌山, 刘楠楠. 页岩甲烷高压等温吸附模型评价与改进[J]. 煤炭学报, 2020, 45(09): 3208-3218.
DONG Yintao, JU Binshan, LIU Nannan Evaluation and improvement of high-pressure isothermal adsorption model for methane in shale[J]. Journal of China Coal Society, 2020, 45(09): 3208-3218.
|
[110] |
HU Biao, CHENG Yuanping, HE Xinxin, et al. New insights into the ch4 adsorption capacity of coal based on microscopic pore properties[J]. Fuel, 2020, 262: 116675.
|
[111] |
张新宾, 宋党育, 李云波, 等. 超临界态甲烷密度研究[J]. 煤田地质与勘探, 2021, 49(01): 137-142.
ZHANG Xinbin, SONG Dangyu, LI Yunbo, et al. Study on density of the supercritical methane[J]. Coal Geology & Exploration, 2021, 49(01): 137-142.
|
[112] |
YAO Yanbin, LIU Dameng, XIE Songbin. Quantitative characterization of methane adsorption on coal using a low-field NMR relaxation method[J]. International Journal of Coal Geology, 2014, 131: 32-40.
|