XU Pei-hua, CHEN Jian-ping, HUANG Run-qiu, YAN Ming. Analyses of 3D numerical simulation of toppling deformation mechanism of Jiefanggou left slope in Jingping Step 1 hydropower station[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(4): 40-43.
Citation: XU Pei-hua, CHEN Jian-ping, HUANG Run-qiu, YAN Ming. Analyses of 3D numerical simulation of toppling deformation mechanism of Jiefanggou left slope in Jingping Step 1 hydropower station[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(4): 40-43.

Analyses of 3D numerical simulation of toppling deformation mechanism of Jiefanggou left slope in Jingping Step 1 hydropower station

More Information
  • Received Date: October 28, 2003
  • The paper discussed the problem of the slope's deformation mechanism.It adopted 3D-σ limit elements numerical modeling and FLAC-3D numerical modeling.The purpose of 3D-σ modeling was the knowledge of slope evolvement mechanism.The purpose of FLAC-3D had two.The one of them was reciprocally validate results between the 3D-σ and FLAC-3D,and the other got deformation characters in cutting valley to understand the deformation cracking mechanism of left slope.The paper gained some conclusions by analyzing.The way that deformation mechanism of valley slope is analyzed from the point of terra stress is feasible. The unloading of slope accelerated the developing of bending and toppling deformation and drew a line of demarcation. The deformation mechanism of Jiefanggou left slope that is explained by author is rational. The unloading of slope also accelerated the developing of deep bending and toppling deformation and drew a line of demarcation too. The figure of breakage face of toppling deformation is double fold line.
  • Related Articles

    [1]WANG Yunhong, WANG Baoli, CHENG Jianyuan, CUI Weixiong, JIN Dan. Borehole-roadway seismic-while-mining tomography using correlation time difference[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 199-204. DOI: 10.3969/j.issn.1001-1986.2021.03.025
    [2]ZHANG Huanlan, WANG Baoli. Waveform cross correlation-based imaging of underground seismic data while mining[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 29-33,40. DOI: 10.3969/j.issn.1001-1986.2020.04.004
    [3]DUAN Jianhua. Comparison of picking method of microseismic first-break[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(3): 82-86. DOI: 10.3969/j.issn.1001-1986.2014.03.019
    [4]DU Zhiqiang, YANG Zhiyuan, WU Yan, LIU Yuhui, WANG Xiangye. The association analysis of grey incidence and the correlation analysis in evaluation of influence factors of coalbed methane content[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(1): 20-23,28. DOI: 10.3969/j.issn.1001-1986.2012.01.005
    [5]JIN Zhaodi, NAI Changxin, LIU Yuqiang, DONG Lu, CHENG Yayu. Application of correlation function-wavelet analysis in stratum identification based on drilling[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(6): 76-80. DOI: 10.3969/j.issn.1001-1986.2011.06.018
    [6]ZHAN Jianqin, TANG Huiming, XIONG Chengren, GU Yajuan. The correlation study on physico-mechanical parameters of rock in western Hubei Province Enshi area[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(4): 42-46,51. DOI: 10.3969/j.issn.1001-1986.2010.04.010
    [7]YANG Jian-ye, REN De-yi, ZHAO Lei. Relationship between sporopollen and major/ trace elements in the low-rank coals[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(4): 17-20.
    [8]FU Yan. Seismic data de-noising based on wavelet transform[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(6): 52-54.
    [9]Gao Gang. THE PYROLYSIS PARAMETERS AND THEIR CORRELATION WITH THE ORGANIC CARBON IN COALBEARING STRATA[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(3): 29-32.
    [10]Zhang Qun, Wu Jingjun. CORRELATIONS BETWEEN MACERALS AND PALEOSPOROPOLLEN TYPES WITHIN COAL SEAM IN HUANGLONG COALFIELD[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(1): 15-19.

Catalog

    Article Metrics

    Article views (23) PDF downloads (2) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return