ZHANG Yun, WEI Yingchun, CAO Daiyong, LI Xin, JIN Liangliang, DONG Bo, WANG Xin. Research progress of lithium and lithium isotopes in coal-bearing strata[J]. COAL GEOLOGY & EXPLORATION.
Citation: ZHANG Yun, WEI Yingchun, CAO Daiyong, LI Xin, JIN Liangliang, DONG Bo, WANG Xin. Research progress of lithium and lithium isotopes in coal-bearing strata[J]. COAL GEOLOGY & EXPLORATION.

Research progress of lithium and lithium isotopes in coal-bearing strata

More Information
  • Received Date: January 21, 2025
  • Revised Date: March 21, 2025
  • [Significance] Lithium (Li), as a strategic metal in emerging industries, has become a significant geochemical tracer due to its pronounced isotopic fractionation effect. In recent years, lithium deposits in coal-bearing strata have emerged as a focus area in the exploration of strategic metal mineral resources. Investigating the composition and variation of lithium isotopes in coal-bearing strata helps to elucidate the sources, migration, and enrichment processes of lithium, providing a theoretical foundation for the exploration and development of lithium deposits in coal-bearing strata. [Advances] This study summarizes the research progress of lithium and its isotopes in coal-bearing strata from three aspects: basic characteristics, isotope composition and fractionation mechanisms, analytical methods for lithium content determination, extraction and separation techniques, and lithium isotope analysis. The findings indicate that lithium is widely distributed in the mantle and crust, exhibiting strong fluid activity. The two natural stable isotopes (6Li and 7Li) display significant fractionation effects due to differences in diffusion rates and relative mass, making them key geochemical tracer tools. Lithium deposits in coal-bearing strata are mainly found in the Carboniferous-Permian coal-bearing strata of North China and the Late Permian coal-bearing strata of South China. Lithium is primarily hosted in secondary clay minerals, and its enrichment is influenced by various factors such as sedimentary diagenesis, microbial activity, tectonic movements, magmatic hydrothermal activity, and groundwater migration. Lithium isotope fractionation in coal-bearing strata is mainly influenced by factors such as temperature, weathering, metamorphism, and the formation of secondary clay minerals. The methods for determining lithium content in coal-bearing strata samples have become relatively mature, and high-precision lithium isotope testing technologies have made the widespread application of lithium isotopes possible. MC-ICP-MS has been preliminarily applied to the study of lithium isotope fractionation mechanisms in coal-bearing strata, but in situ micro-area lithium isotope testing technology is still in the exploratory stage. Due to the complex components and structures of lithium-bearing carriers in coal-bearing strata, there is an urgent need to develop in-situ analytical standard samples for lithium isotopes in coal-bearing strata and to establish standardized analytical protocols. The focus of the separation and extraction technology for lithium resources in coal-bearing strata is improving leaching efficiency and the purification and recovery of lithium from the leachate. [Prospects] Current research on the fractionation mechanisms of lithium isotopes in coal-bearing strata remains insufficient, with several limitations, including a superficial understanding of the fractionation mechanisms, the quality discrimination effect in testing methods, and the lack of in situ analysis standard samples and simulation experiment validation. Future research trends for lithium and its isotopes in coal-bearing strata include the study of the dynamic processes and enrichment mechanisms of lithium migration in coal-bearing strata, the development of high-precision lithium isotope testing and analysis technologies, the investigation of the coupling mechanism between lithium isotope fractionation and sedimentary thermal evolution processes, and the separation, extraction and recovery of lithium resources in coal-bearing strata.
  • [1]
    BALARAM V,SANTOSH M,SATYANARAYANAN M,et al. Lithium:A review of applications,occurrence,exploration,extraction,recycling,analysis,and environmental impact[J]. Geoscience Frontiers,2024,15(5):101868.
    [2]
    翟明国,吴福元,胡瑞忠,等. 战略性关键金属矿产资源:现状与问题[J]. 中国科学基金,2019,33(2):106-111.

    ZHAI Mingguo,WU Fuyuan,HU Ruizhong,et al. Critical metal mineral resources:Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China,2019,33(2):106-111.
    [3]
    蒋少涌,温汉捷,许成,等. 关键金属元素的多圈层循环与富集机理:主要科学问题及未来研究方向[J]. 中国科学基金,2019,33(2):112-118.

    JIANG Shaoyong,WEN Hanjie,XU Cheng,et al. Earth sphere cycling and enrichment mechanism of critical metals:Major scientific issues for future research[J]. Bulletin of National Natural Science Foundation of China,2019,33(2):112-118.
    [4]
    曹代勇,魏迎春,李新,等. 煤与煤系战略性金属矿产协同勘查理论与技术体系框架探讨[J]. 煤炭学报,2024,49(1):479-494.

    CAO Daiyong,WEI Yingchun,LI Xin,et al. Discussion on the theory and technical system framework of cooperative exploration of coal and strategic metal resources in coal-bearing strata[J]. Journal of China Coal Society,2024,49(1):479-494.
    [5]
    魏迎春,李新,曹代勇,等. 煤与煤系战略性金属矿产协同勘查技术方法[J]. 煤炭科学技术,2023,51(12):27-41.

    WEI Yingchun,LI Xin,CAO Daiyong,et al. Cooperative exploration methods of coal and strategic metal resources in coal-bearing strata[J]. Coal Science and Technology,2023,51(12):27-41.
    [6]
    魏迎春,李新,曹代勇,等. 煤与煤系战略性金属矿产协同勘查模型[J]. 地质学报,2024,98(8):2517-2530.

    WEI Yingchun,LI Xin,CAO Daiyong,et al. Cooperative exploration model of coal and strategic metal resources in coal-bearing strata[J]. Acta Geologica Sinica,2024,98(8):2517-2530.
    [7]
    DAI Shifeng,FINKELMAN R B. Coal as a promising source of critical elements:Progress and future prospects[J]. International Journal of Coal Geology,2018,186:155-164.
    [8]
    代世峰,赵蕾,王宁,等. 煤系中关键金属元素的成矿作用研究进展与展望[J]. 矿物岩石地球化学通报,2024,43(1):49-63.

    DAI Shifeng,ZHAO Lei,WANG Ning,et al. Advance and prospect of researches on the mineralization of critical elements in coal-bearing sequences[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2024,43(1):49-63.
    [9]
    林俊伟,刘东娜,张尚清. 华北兴县含铝岩系矿物特征及物源分析[C]//第十届全国成矿理论与找矿方法学术讨论会论文摘要集. 西安,2023.
    [10]
    秦勇. 中国煤系矿产近现代地质研究进展与走向[J]. 煤田地质与勘探,2025,53(1):12-35.

    QIN Yong. Advances and trends of modern and contemporary research on the geology of coal-measure minerals in China[J]. Coal Geology & Exploration,2025,53(1):12-35.
    [11]
    曹代勇,秦国红,魏迎春,等. 煤系矿产资源赋存的盆地动力学控制:研究现状与展望[J]. 中国煤炭地质,2020,32(9):38-46.

    CAO Daiyong,QIN Guohong,WEI Yingchun,et al. Basin dynamics controlling of coal measures mineral resources hosting:Research status and expectation[J]. Coal Geology of China,2020,32(9):38-46.
    [12]
    曹代勇,魏迎春,秦国红,等. 煤系战略性金属元素富集成矿的构造控制[J]. 煤田地质与勘探,2023,51(1):66-85.

    CAO Daiyong,WEI Yingchun,QIN Guohong,et al. Tectonic control on enrichment and metallogenesis of strategic metal elements in coal measures[J]. Coal Geology & Exploration,2023,51(1):66-85.
    [13]
    DAI Shifeng,REN Deyi,CHOU Chenlin,et al. Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J]. International Journal of Coal Geology,2012,94:3-21.
    [14]
    程晨,宋杨,臧静坤,等. 贵州普安矿区20号煤中锂的赋存状态及逐级化学提取实验研究[J]. 煤田地质与勘探,2022,50(10):44-53.

    CHENG Chen,SONG Yang,ZANG Jingkun,et al. Occurrence modes and stepwise chemical extraction experiment of lithium in No. 20 coal seam in Pu’an mining area,Guizhou Province[J]. Coal Geology & Exploration,2022,50(10):44-53.
    [15]
    TOMASCAK P B,MAGNA T,DOHMEN R. Advances in lithium isotope geochemistry[M]. Switzerland:Springer Cham,2016.
    [16]
    YAMAJI K,MAKITA Y,WATANABE H,et al. Theoretical estimation of lithium isotopic reduced partition function ratio for lithium ions in aqueous solution[J]. The Journal of Physical Chemistry A,2001,105(3):602-613.
    [17]
    HUH Y,CHAN L H,ZHANG Libo,et al. Lithium and its isotopes in major world rivers:Implications for weathering and the oceanic budget[J]. Geochimica et Cosmochimica Acta,1998,62(12):2039-2051.
    [18]
    WIMPENNY J,GÍSLASON S R,JAMES R H,et al. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt[J]. Geochimica et Cosmochimica Acta,2010,74(18):5259-5279.
    [19]
    张婧雯,刘海娇,李杨子,等. 煤炭的非传统稳定同位素研究进展[J]. 地球环境学报,2023,14(1):38-48.

    ZHANG Jingwen,LIU Haijiao,LI Yangzi,et al. A review of recent development of non-traditional stable isotope geochemistry in coal[J]. Journal of Earth Environment,2023,14(1):38-48.
    [20]
    陈瑜,徐飞,程宏飞,等. 锂同位素地球化学研究新进展[J].地学前缘,2023,30(5):469-490.

    CHEN Yu,XU Fei,CHENG Hongfei,et al. Lithium isotope geochemistry:A review[J]. Earth Science Frontiers,2023,30(5):469-490.
    [21]
    HARKNESS J S,RUHL L S,MILLOT R,et al. Lithium isotope fingerprints in coal and coal combustion residuals from the United States[J]. Procedia Earth and Planetary Science,2015,13:134-137.
    [22]
    TEICHERT Z,BOSE M,WILLIAMS L B. Lithium isotope compositions of U. S. coals and source rocks:Potential tracer of hydrocarbons[J]. Chemical Geology,2020,549:119694.
    [23]
    HE Maoyong,LUO Chongguang,LU Hai,et al. Measurements of lithium isotopic compositions in coal using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2019,34(9):1773-1778.
    [24]
    HE Hongtao,WANG Jinxi,XING Lecai,et al. Enrichment mechanisms of lithium in the No. 6 coal seam from the Guanbanwusu Mine,Inner Mongolia,China:Explanations based on Li isotope values and density functional theory calculations[J]. Journal of Geochemical Exploration,2020,213:106510.
    [25]
    SUN Beilei,GUO Zhanming,LIU Chao,et al. Lithium isotopic composition of two high-lithium coals and their fractions with different lithium occurrence modes,Shanxi Province,China[J]. International Journal of Coal Geology,2023,277:104338.
    [26]
    孙蓓蕾,孔艳磊,王国权,等. 高锂无烟煤中不同赋存态锂同位素组成趋同特征及其机理[J]. 煤炭学报,2022,47(5):1773-1781.

    SUN Beilei,KONG Yanlei,WANG Guoquan,et al. Convergence and its mechanism of lithium isotopic composition with different occurrence states in Li-rich anthracite[J]. Journal of China Coal Society,2022,47(5):1773-1781.
    [27]
    MORIGUTI T,SHIBATA T,NAKAMURA E. Lithium,boron and lead isotope and trace element systematics of Quaternary basaltic volcanic rocks in Northeastern Japan:Mineralogical controls on slab-derived fluid composition[J]. Chemical Geology,2004,212(1/2):81-100.
    [28]
    SEITZ H M,WOODLAND A B. The distribution of lithium in peridotitic and pyroxenitic mantle lithologies:An indicator of magmatic and metasomatic processes[J]. Chemical Geology,2000,166(1/2):47-64.
    [29]
    VON STRANDMANN P A E P,FRASER W T,HAMMOND S J,et al. Experimental determination of Li isotope behaviour during basalt weathering[J]. Chemical Geology,2019,517:34-43.
    [30]
    SEITZ H M,BREY G P,LAHAYE Y,et al. Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes[J]. Chemical Geology,2004,212(1/2):163-177.
    [31]
    RYAN J G,LANGMUIR C H. The systematics of lithium abundances in young volcanic rocks[J]. Geochimica et Cosmochimica Acta,1987,51(6):1727-1741.
    [32]
    RUDNICK R L,TOMASCAK P B,NJO H B,et al. Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina[J]. Chemical Geology,2004,212(1/2):45-57.
    [33]
    CHAN L H,ALT J C,TEAGLE D A H. Lithium and lithium isotope profiles through the upper oceanic crust:A study of seawater-basalt exchange at ODP Sites 504B and 896A[J]. Earth and Planetary Science Letters,2002,201(1):187-201.
    [34]
    YANG Dan,HOU Zengqian,ZHAO Yue,et al. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system[J]. Scientific Reports,2015,5:13812.
    [35]
    XIAO Yan,ZHANG Hongfu,DELOULE E,et al. Large lithium isotopic variations in minerals from peridotite xenoliths from the Eastern North China Craton[J]. The Journal of Geology,2015,123(1):79-94.
    [36]
    SUN He,XIAO Yilin,GAO Yongjun,et al. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(15):3782-3787.
    [37]
    KETRIS M P,YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes:World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78(2):135-148.
    [38]
    孙玉壮,赵存良,李彦恒,等. 煤中某些伴生金属元素的综合利用指标探讨[J]. 煤炭学报,2014,39(4):744-748.

    SUN Yuzhuang,ZHAO Cunliang,LI Yanheng,et al. Minimum mining grade of the selected trace elements in Chinese coal[J]. Journal of China Coal Society,2014,39(4):744-748.
    [39]
    朱尤青,罗朝坤,杨晓飞,等. 黔中地区蔡家坝铝土矿床富锂铝土岩地球化学特征及沉积环境研究[J]. 地质与勘探,2024,60(4):735-746.

    ZHU Youqing,LUO Chaokun,YANG Xiaofei,et al. Geochemical characteristics and sedimentary environment of Li-rich bauxite in the Caijiaba bauxite deposit,central Guizhou Province[J]. Geology and Exploration,2024,60(4):735-746.
    [40]
    程宏飞,周轩平. 沉积型锂矿的成矿特征及锂赋存状态研究进展[J]. 金属矿山,2024(5):28-40.

    CHENG Hongfei,ZHOU Xuanping. Research progress on the metallogenic characteristics of sedimentary lithium deposits and the occurrence state of lithium[J]. Metal Mine,2024(5):28-40.
    [41]
    DAI Shifeng,FINKELMAN R B,FRENCH D,et al. Modes of occurrence of elements in coal:A critical evaluation[J]. Earth-Science Reviews,2021,222:103815.
    [42]
    WARD C R. Analysis,origin and significance of mineral matter in coal:An updated review[J]. International Journal of Coal Geology,2016,165:1-27.
    [43]
    DI Shaobo,DAI Shifeng,NECHAEV V P,et al. Mineralogy and enrichment of critical elements (Li and Nb-Ta-Zr-Hf-Ga) in the Pennsylvanian coals from the Antaibao Surface Mine,Shanxi Province,China:Derivation of pyroclastics and sediment-source regions[J]. International Journal of Coal Geology,2023,273:104262.
    [44]
    HAO Huidi,LI Jingzhi,WANG Jinxi,et al. Distribution characteristics and enrichment model of valuable elements in coal:An example from the Nangou Mine,Ningwu Coalfield,Northern China[J]. Ore Geology Reviews,2023,160:105599.
    [45]
    SUN Beilei,LIU Yunxia,TAJCMANOVA L,et al. In-situ analysis of the lithium occurrence in the No. 11 coal from the Antaibao mining district,Ningwu Coalfield,Northern China[J]. Ore Geology Reviews,2022,144:104825.
    [46]
    LIU Bangjun,WANG Junyan,HE Hongtao,et al. Geochemistry of Carboniferous coals from the Laoyaogou Mine,Ningwu Coalfield,Shanxi Province,Northern China:Emphasis on the enrichment of valuable elements[J]. Fuel,2020,279:118414.
    [47]
    HOU Yuehua,LIU Dongna,ZHAO Fenghua,et al. Mineralogical and geochemical characteristics of coal from the southeastern Qinshui Basin:Implications for the enrichment and economic value of Li and REY[J]. International Journal of Coal Geology,2022,264:104136.
    [48]
    WANG Xiaomei,WANG Xiaoming,PAN Zhejun,et al. Mineralogical and geochemical characteristics of the Permian coal from the Qinshui Basin,Northern China,with emphasis on lithium enrichment[J]. International Journal of Coal Geology,2019,214:103254.
    [49]
    XIE Panpan,HOWER J C,NECHAEV V P,et al. Lithium and redox-sensitive (Ge,U,Mo,V) element mineralization in the Pennsylvanian coals from the Huangtupo Coalfield,Shanxi,Northern China:With emphasis on the interaction of infiltrating seawater and exfiltrating groundwater[J]. Fuel,2021,300:120948.
    [50]
    ZHAO Lei,DAI Shifeng,NECHAEV V P,et al. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield,southeastern Qinshui Basin,Northern China[J]. Ore Geology Reviews,2019,115:103184.
    [51]
    LI Jintao,LIU Linsong,KANG Xingjian,et al. Enrichment of lithium in the claystone coal gangue from the Malan Mine,Xishan Coalfield,Shanxi Province,Northern China[J]. Geochemistry,2023,83(2):125972.
    [52]
    SUN Yuzhuang,YANG Jingjing,ZHAO Cunliang. Minimum mining grade of associated Li deposits in coal seams[J]. Energy Exploration & Exploitation,2012,30(2):167-170.
    [53]
    DAI Shifeng,LI Dan,CHOU Chenlin,et al. Mineralogy and geochemistry of boehmite-rich coals:New insights from the Haerwusu surface mine,Jungar Coalfield,Inner Mongolia,China[J]. International Journal of Coal Geology,2008,74(3/4):185-202.
    [54]
    QIN Guohong,WEI Jinhao,WEI Yingchun,et al. The differences in the Li enrichment mechanism between the No. 6 Li-rich coals and parting in Haerwusu Mine,Ordos Basin:Evidenced using in situ Li microscale characteristics and Li isotopes[J]. Minerals,2024,14(8):836.
    [55]
    DAI Shifeng,REN Deyi,CHOU Chenlin,et al. Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger Coalfield,Ordos Basin,China[J]. International Journal of Coal Geology,2006,66(4):253-270.
    [56]
    JIU Bo,HUANG Wenhui,SPIRO B,et al. Distribution of Li,Ga,Nb,and REEs in coal as determined by LA-ICP-MS imaging:A case study from Jungar Coalfield,Ordos Basin,China[J]. International Journal of Coal Geology,2023,267:104184.
    [57]
    ZHANG Shuai,YUAN Tangchen,SUN Bo,et al. Formation of boehmite through desilication of volcanic-ash-altered kaolinite and its retention for gallium:Contribution to enrichment of aluminum and gallium in coal[J]. International Journal of Coal Geology,2024,281:104404.
    [58]
    YANG Ning,TANG Shuheng,ZHANG Songhang,et al. In seam variation of element-oxides and trace elements in coal from the eastern Ordos Basin,China[J]. International Journal of Coal Geology,2018,197:31-41.
    [59]
    魏迎春,华芳辉,何文博,等. 峰峰矿区2号煤中微量元素富集特征差异性研究[J]. 煤炭学报,2020,45(4):1473-1487.

    WEI Yingchun,HUA Fanghui,HE Wenbo,et al. Difference of trace elements characteristics of No. 2 coal in Fengfeng mining area[J]. Journal of China Coal Society,2020,45(4):1473-1487.
    [60]
    WEI Yingchun,HE Wenbo,QIN Guohong,et al. Lithium enrichment in the No. 21 coal of the Hebi No. 6 Mine,Anhe Coalfield,Henan Province,China[J]. Minerals,2020,10(6):521.
    [61]
    秦国红. 鄂尔多斯盆地晚古生代煤中微量元素富集特征与成因类型[D]. 北京:中国矿业大学(北京),2020.

    QIN Guohong. Enrichment characteristics and genetic types of trace elements in the Late Paleozoic Coal from Ordos Basin[D]. Beijing:China University of Mining & Technology(Beijing),2020.
    [62]
    QIN Guohong,CAO Daiyong,WEI Yingchun,et al. Geochemical characteristics of the Permian coals in the Junger-Hebaopian mining district,northeastern Ordos Basin,China:Key role of paleopeat-forming environments in Ga-Li-REY enrichment[J]. Journal of Geochemical Exploration,2020,213:106494.
    [63]
    WANG Zhen,DAI Shifeng,ZOU Jianhua,et al. Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan,Southwest China:Concentration,characterization and optimized extraction[J]. International Journal of Coal Geology,2019,203:1-14.
    [64]
    DAI Shifeng,XIE Panpan,JIA Shaohui,et al. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield,Chongqing,China:Genetic implications from geochemical and mineralogical data[J]. Ore Geology Reviews,2017,80:1-17.
    [65]
    ZHOU Mingxuan,ZHAO Lei,WANG Xibo,et al. Mineralogy and geochemistry of the Late Triassic coal from the Caotang Mine,northeastern Sichuan Basin,China,with emphasis on the enrichment of the critical element lithium[J]. Ore Geology Reviews,2021,139:104582.
    [66]
    LI Weiwei,TANG Yuegang. Sulfur isotopic composition of superhigh-organic-sulfur coals from the Chenxi Coalfield,Southern China[J]. International Journal of Coal Geology,2014,127:3-13.
    [67]
    DAI Shifeng,ZHANG Weiguo,WARD C R,et al. Mineralogical and geochemical anomalies of Late Permian coals from the Fusui Coalfield,Guangxi Province,Southern China:Influences of terrigenous materials and hydrothermal fluids[J]. International Journal of Coal Geology,2013,105:60-84.
    [68]
    唐修义,黄文辉. 中国煤中微量元素[M]. 北京:商务印书馆,2004.
    [69]
    任德贻,赵峰华,代世峰,等. 煤的微量元素地球化学[M]. 北京:科学出版社,2006.
    [70]
    曹代勇,魏迎春. 鄂尔多斯盆地煤系矿产赋存规律与资源评价[M]. 北京:科学出版社,2019.
    [71]
    LI Xin,WEI Yingchun,CAO Daiyong,et al. Cooperative exploration model of coal-lithium deposit:A case study of the Haerwusu coal-lithium deposit in the Jungar Coalfield,Inner Mongolia,Northern China[J]. Minerals,2024,14(2):179.
    [72]
    王金喜. 宁武盆地石炭二叠系煤中锂富集的沉积控制[D]. 徐州:中国矿业大学,2019. WANG Jinxi. Sedimentary control of lithium enrichment in Permo-Carboniferous coals from Ningwu Basin,Shanxi,China[D]. Xuzhou:China University of Mining and Technology,2019.
    [73]
    苟龙飞,金章东,贺茂勇. 锂同位素示踪大陆风化:进展与挑战[J]. 地球环境学报,2017,8(2):89-102.

    GOU Longfei,JIN Zhangdong,HE Maoyong. Using lithium isotopes traces continental weathering:Progresses and challenges[J]. Journal of Earth Environment,2017,8(2):89-102.
    [74]
    左贵彬. 河南禹州煤田石炭-二叠纪煤中锂的富集机理[D]. 邯郸:河北工程大学,2021. ZUO Guibin. Mechanism of lithium enrichment in Carboniferous-Permian coals in Yuzhou Coalfield,Henan Province[D]. Handan:Hebei University of Engineering,2021.
    [75]
    TENG Fangzhen,LI Wangye,RUDNICK R L,et al. Contrasting lithium and magnesium isotope fractionation during continental weathering[J]. Earth and Planetary Science Letters,2010,300(1/2):63-71.
    [76]
    WUNDER B,MEIXNER A,ROMER R L,et al. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids[J]. Contributions to Mineralogy and Petrology,2006,151(1):112-120.
    [77]
    LI Wenshuai,LIU Xiaoming,CHADWICK O A. Lithium isotope behavior in Hawaiian regoliths:Soil-atmosphere-biosphere exchanges[J]. Geochimica et Cosmochimica Acta,2020,285:175-192.
    [78]
    LI Su,NIE Junsheng,REN Xueping,et al. Increased primary mineral dissolution control on a terrestrial silicate lithium isotope record during the middle Miocene Climate Optimum[J]. Geochimica et Cosmochimica Acta,2023,348:41-53.
    [79]
    李献华,刘宇,汤艳杰,等. 离子探针Li同位素微区原位分析技术与应用[J]. 地学前缘,2015,22(5):160-170.

    LI Xianhua,LIU Yu,TANG Yanjie,et al. In situ Li isotopic microanalysis using SIMS and its applications[J]. Earth Science Frontiers,2015,22(5):160-170.
    [80]
    徐飞,秦身钧,李神勇,等. 煤及煤灰中锂的地球化学及其提取研究进展[J]. 煤炭科学技术,2021,49(9):220-229.

    XU Fei,QIN Shenjun,LI Shenyong,et al. Research progress on geochemistry and extraction of lithium from coal and coal ash[J]. Coal Science and Technology,2021,49(9):220-229.
    [81]
    ZHANG Shuai,XIU Wei,SUN Bo,et al. Provenance of multi-stage volcanic ash recorded in the Late Carboniferous coal in the Jungar Coalfield,North China,and their contribution to the enrichment of critical metals in the coal[J]. International Journal of Coal Geology,2023,273:104265.
    [82]
    JIU Bo,JIN Zhijun,WANG Zhaoguo. Multiscale in-situ elemental characterization of critical elements in low rank coal,implications for modes of occurrence[J]. Fuel,2023,349:128632.
    [83]
    方丹,夏阳超,李永改,等. 煤系战略性金属锂镓的富集分离研究进展[J]. 金属矿山,2024,(1):233-243.

    FANG Dan,XIA Yangchao,LI Yonggai,et al. Research Progress on Enrichment and Separation of Strategic Metal Lithium and Gallium from Coal-related Resources[J]. Metal Mine,2024,(1):233-243.
    [84]
    赵泽森,高建明,郭彦霞,等. 不同活化条件下粉煤灰中锂的酸碱溶出特性[J]. 环境科学研究,2018,31(3):569-576.

    ZHAO Zesen,GAO Jianming,GUO Yanxia,et al. Acid-alkali dissolution characteristics of lithium in fly ash under different activation conditions[J]. Research of Environmental Sciences,2018,31(3):569-576.
    [85]
    MONDAL S,GHAR A,SATPATI A K,et al. Recovery of rare earth elements from coal fly ash using TEHDGA impregnated resin[J]. Hydrometallurgy,2019,185:93-101.
    [86]
    代红,李彦恒,侯晓琪,等. 粉煤灰碳酸钠烧结工艺中影响锂浸出率因素的研究[J]. 有色金属(冶炼部分),2015(4):17-19.

    DAI Hong,LI Yanheng,HOU Xiaoqi,et al. Study of factors effecting lithium leaching rate from coal ash in sodium carbonate sintering process[J]. Nonferrous Metals(Extractive Metallurgy),2015(4):17-19.
    [87]
    BRAOS-GARCı́A P,MAIRELES-TORRES P,RODRı́GUEZ-CASTELLÓN E,et al. Gas-phase hydrogenation of acetonitrile over nickel supported on alumina- and mixed alumina/gallium oxide-pillared tin phosphate catalysts[J]. Journal of Molecular Catalysis A:Chemical,2001,168(1/2):279-287.
    [88]
    隋丽丽,翟玉春,孙莹莹. 粉煤灰硫酸氢铵焙烧法提取氧化铝的研究[J]. 有色金属(冶炼部分),2017(4):20-24.

    SUI Lili,ZHAI Yuchun,SUN Yingying. Study on extraction of Al2O3 from fly ash by ammonium bisulfate roasting[J]. Nonferrous Metals(Extractive Metallurgy),2017(4):20-24.
    [89]
    杨敬杰,孙红娟,彭同江,等. 硫酸/硫酸铵混合助剂焙烧粉煤灰提取Al2O3[J]. 硅酸盐学报,2016,44(10):1538-1542.

    YANG Jingjie,SUN Hongjuan,PENG Tongjiang,et al. Alumina extraction from coal fly ash with ammonium sulfate and sulfuric acid[J]. Journal of the Chinese Ceramic Society,2016,44(10):1538-1542.
    [90]
    侯晓琪,李彦恒,代红,等. 从粉煤灰中浸出锂的工艺研究[J].河北工程大学学报(自然科学版),2015,32(1):58-61.

    HOU Xiaoqi,LI Yanheng,DAI Hong,et al. Leaching of lithium from fly ash using carbonate[J]. Journal of Hebei University of Engineering(Natural Science Edition),2015,32(1):58-61.
    [91]
    侯永茹,李彦恒,代红,等. 用吸附法从粉煤灰碱性溶液里提取锂[J]. 粉煤灰综合利用,2015,29(3):10-11.

    HOU Yongru,LI Yanheng,DAI Hong,et al. Experimental study on litohium extraction from fly ash alkaline solution by absorption method[J]. Fly Ash Comprehensive Utilization,2015,29(3):10-11.
    [92]
    单雪媛. 粉煤灰中有价元素分布规律及浸出行为研究[D]. 太原:山西大学,2019. SHAN Xueyuan. Study on distribution and extraction characteristics of valuable elements in fly ash[D]. Taiyuan:Shanxi University,2019.
    [93]
    朱士飞,毛礼鑫,曹泊,等. 基于正交实验对煤灰中锂提取率多因素分析[J]. 煤炭技术,2023,42(7):221-225.

    ZHU Shifei,MAO Lixin,CAO Bo,et al. Multi-factor analysis of lithium extraction rate from coal ash based on orthogonal experiment[J]. Coal Technology,2023,42(7):221-225.
    [94]
    RUDNIK E. Coal and coal by-products as unconventional lithium sources:A review of occurrence modes and hydrometallurgical strategies for metal recovery[J]. Minerals,2024,14(8):849.
    [95]
    苏慧,朱兆武,王丽娜,等. 矿石资源中锂的提取与回收研究进展[J]. 化工学报,2019,70(1):10-23.

    SU Hui,ZHU Zhaowu,WANG Lina,et al. Research progress in extraction and recovery of lithium from hard-rock ores[J]. CIESC Journal,2019,70(1):10-23.
    [96]
    程芳琴,王波,成怀刚. 粉煤灰提取高附加值有价元素的技术现状及进展[J]. 无机盐工业,2017,49(2):1-4.

    CHENG Fangqin,WANG Bo,CHENG Huaigang. Research progress of extracting high added value elements from fly ash[J]. Inorganic Chemicals Industry,2017,49(2):1-4.
    [97]
    苏慧,朱兆武,王丽娜,等. 从盐湖卤水中提取与回收锂的技术进展及展望[J]. 材料导报,2019,33(7):2119-2126.

    SU Hui,ZHU Zhaowu,WANG Lina,et al. Advances and prospects of extracting and recovering lithium from salt lake brines[J]. Materials Reports,2019,33(7):2119-2126.
    [98]
    张文杰,童雄,谢贤,等. 稀土分离纯化技术研究现状[J]. 中国稀土学报,2022,40(1):24-37.

    ZHANG Wenjie,TONG Xiong,XIE Xian,et al. A review on research of rare earths separation and purification technology[J]. Journal of the Chinese Society of Rare Earths,2022,40(1):24-37.
    [99]
    周晴,贺茂勇,孔凡翠,等. 锂同位素高精度测定进展、应用与发展趋势[J]. 盐湖研究,2025,33(1):1-17.

    ZHOU Qing,HE Maoyong,KONG Fancui,et al. Advancements,applications and development trends in high-precision lithium isotope analysis[J]. Journal of Salt Lake Research,2025,33(1):1-17.
    [100]
    汤艳杰,张宏福,英基丰. 锂同位素分馏机制讨论[J]. 地球科学,2009,34(1):43-55.

    TANG Yanjie,ZHANG Hongfu,YING Jifeng. Discussion on fractionation mechanism of lithium isotopes[J]. Earth Science,2009,34(1):43-55.
    [101]
    BHUSHAN K S,GOSWAMI P G,RAO R M. Precise determination of 6Li/7Li isotopic ratio with NaLiBO2+ ion using total evaporation and ion integration by Thermal Ionization Mass Spectrometry (TIMS)[J]. International Journal of Mass Spectrometry,2021,469:116683.
    [102]
    MISRA S,FROELICH P N. Measurement of lithium isotope ratios by quadrupole-ICP-MS:Application to seawater and natural carbonates[J]. Journal of Analytical Atomic Spectrometry,2009,24(11):1524-1533.
    [103]
    MAGNA T,JANOUŠEK V,KOHÚT M,et al. Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granites[J]. Chemical Geology,2010,274(1/2):94-107.
    [104]
    蔺洁,刘勇胜,胡兆初,等. MC-ICP-MS准确测定地质样品中锂同位素组成[J]. 矿物岩石地球化学通报,2016,35(3):458-464.

    LIN Jie,LIU Yongsheng,HU Zhaochu,et al. Accurate analysis of lithium isotopic composition of geological samples by MC-ICP-MS[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2016,35(3):458-464.
    [105]
    XU Rong,LIU Yongsheng,TONG Xirun,et al. In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian,North China Craton:Insights into Pacific slab subduction-related mantle modification[J]. Chemical Geology,2013,354:107-123.
    [106]
    BECK P,CHAUSSIDON M,BARRAT J A,et al. Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks:The case of pyroxene phenocrysts from nakhlite meteorites[J]. Geochimica et Cosmochimica Acta,2006,70(18):4813-4825.

Catalog

    Article Metrics

    Article views (2) PDF downloads (2) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return