SHI Xianxin, LIU Qiang, HU Jiwu, WANG Pan, LIAN Chenguang, JIA Qian, ZHANG Miaomiao, NIE Ailan. A 3D seismic physical modeling system of large double triaxial air-supported positioning and multichannel data acquisition and its application[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 81-86. DOI: 10.3969/j.issn.1001-1986.2021.06.009
Citation: SHI Xianxin, LIU Qiang, HU Jiwu, WANG Pan, LIAN Chenguang, JIA Qian, ZHANG Miaomiao, NIE Ailan. A 3D seismic physical modeling system of large double triaxial air-supported positioning and multichannel data acquisition and its application[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 81-86. DOI: 10.3969/j.issn.1001-1986.2021.06.009

A 3D seismic physical modeling system of large double triaxial air-supported positioning and multichannel data acquisition and its application

More Information
  • Received Date: September 08, 2021
  • Revised Date: October 25, 2021
  • Available Online: December 29, 2021
  • Published Date: December 24, 2021
  • As an important technology to study seismic wave propagation characteristics, 3D seismic physical simulation is an effective method to understand the propagation law and response characteristics of seismic waves in complex structures. It has the advantages of more realistic results and no limitation on calculation methods and boundary conditions over numerical simulation. Therefore, it has important applications in the research of the basic law of seismic wave propagation, verification of field seismic exploration methods, design optimization of observation systems, etc. This paper presents a 3D seismic physical modeling system of large double triaxial air-supported positioning and multichannel data acquisition, which consists of the guide rail and transmission system, motion control system, positioning measurement system, physical simulation data acquisition system and safety system. It is available for large-scale and high-precision physical model positioning, as well as multichannel, high efficiency, high SNR, high resolution model ultrasonic signal acquisition. The system has been adopted to collect data from the actual 3D seismic physical model of coal-bearing strata with faults, collapse columns and coal seam thinning belt, and the overall imaging effect is consistent with the seismic physical model, showing the reliability and accuracy of the system. The successful development of the system provides a new experimental technique for the theoretical research and practical application of coal seismic exploration.
  • [1]
    张蕾, 王军, 张中巧, 等. 基于地震物理模拟的三角洲砂体识别及刻画技术[J]. 石油地质与工程, 2019, 33(1): 30–33. DOI: 10.3969/j.issn.1673-8217.2019.01.008

    ZHANG Lei, WANG Jun, ZHANG Zhongqiao, et al. Identification and characterization of delta sand bodies based on seismic physical simulation[J]. Petroleum Geology and Engineering, 2019, 33(1): 30–33. DOI: 10.3969/j.issn.1673-8217.2019.01.008
    [2]
    王国庆, 魏建新, 刘伟方, 等. 大型多道地震物理模拟系统设计方案及实现[J]. 岩性油气藏, 2016, 28(6): 95–102. DOI: 10.3969/j.issn.1673-8926.2016.06.013

    WANG Guoqing, WEI Jianxin, LIU Weifang, et al. Design of large-scale multi-channel seismic physical modeling system and its implementation[J]. Lithologic Reservoirs, 2016, 28(6): 95–102. DOI: 10.3969/j.issn.1673-8926.2016.06.013
    [3]
    司文朋, 杨勤勇, 邢廷栋, 等. 储层地震物理模拟的震源指向性及介质非均质性影响分析[J]. 地球物理学报, 2021, 64(2): 628–636. http://www.cnki.com.cn/Article/CJFDTotal-DQWX202102019.htm

    SI Wenpeng, YANG Qinyong, XING Tingdong, et al. Influence of source directivity and medium heterogeneity on seismic physical simulation of reservoirs[J]. Chinese Journal of Geophysics, 2021, 64(2): 628–636. http://www.cnki.com.cn/Article/CJFDTotal-DQWX202102019.htm
    [4]
    郝守玲, 赵群. 地震物理模型技术的应用与发展[J]. 勘探地球物理进展, 2002, 25(2): 34–43. http://www.cnki.com.cn/Article/CJFDTotal-KTDQ200202009.htm

    HAO Shouling, ZHAO Qun. Application and development of seismic physical model technology[J]. Progress in Exploration Geophysics, 2002, 25(2): 34–43. http://www.cnki.com.cn/Article/CJFDTotal-KTDQ200202009.htm
    [5]
    王国庆, 徐中华, 刘伟方. 多通道三维地震物理模拟数据采集方法及装置: CN 109270576[P]. 2020-08-11.

    WANG Guoqing, XU Zhonghua, LIU Weifang. Multi-channel three-dimensional seismic physical simulation data acquisition method and device: CN 109270576[P]. 2020-08-11.
    [6]
    MCDONALD J A, GARDNER G H F, HILTERMAN F J. Seismic studies in physical modeling[M]. United States: Springer, 1983.
    [7]
    TATHAM R, GOOLSBEE D V, MASSELL W, et al. Seismic shear-wave observation in a physical model experiment[J]. Geophysics, 1983, 48(6): 688–701. DOI: 10.1190/1.1441499
    [8]
    ASSAD J, TATHAM R, MCDONALD J A. Physical model study of microcrack-induced anisotropy[J]. Geophysics, 1992, 57(12): 1562–1570. DOI: 10.1190/1.1443224
    [9]
    牟永光, 裴正林. 三维复杂介质地震物理模拟[M]. 北京: 石油工业出版社, 2003.

    MOU Yongguang, PEI Zhenglin. Seismic numerical modeling for 3D complex media[M]. Beijing: Petroleum Industry Press, 2003.
    [10]
    WONG J, HALL K W, GALLANT E V, et al. Seismic physical modelling at the university of Calgary[C]//Houston: SEG Technical Program Expanded Abstracts 2009.
    [11]
    胡涛. 多道地震物理模拟采集系统研制[D]. 北京: 中国石油大学(北京), 2016. http://cdmd.cnki.com.cn/Article/CDMD-11414-1018701027.htm

    HU Tao. Research and development of multichannel seismic physical simulation acquisition system[D]. Beijing: China University of Petroleum(Beijing), 2016. http://cdmd.cnki.com.cn/Article/CDMD-11414-1018701027.htm
    [12]
    曲寿利, 朱生旺, 赵群, 等. 碳酸盐岩孔洞型储集体地震反射特征分析[J]. 地球物理学报, 2012, 55(6): 2053–2061. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201206026.htm

    QU Shouli, ZHU Shengwang, ZHAO Qun, et al. Analysis of seismic reflection characters for carbonate karst reservoir[J]. Chinese Journal of Geophysics, 2012, 55(6): 2053–2061. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201206026.htm
    [13]
    赵群. 面向起伏地表和缝洞储层的物理模拟技术研究[D]. 成都: 成都理工大学, 2008. http://cdmd.cnki.com.cn/article/cdmd-10616-2008086100.htm

    ZHAO Qun. Study of fracture-cave reservoirs from rugged topography with physical modeling technology[D]. Chengdu: Chengdu University of Technology, 2008. http://cdmd.cnki.com.cn/article/cdmd-10616-2008086100.htm
    [14]
    司文朋, 狄帮让, 魏建新. 部分饱和砂岩储层地震物理模拟及含气饱和度预测分析[J]. 地球物理学报, 2017, 60(4): 1547–1556. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201704027.htm

    SI Wenpeng, DI Bangrang, WEI Jianxin. Seismic physical modeling and gas saturation predictior of partially-saturated gas sand reservoir[J]. Chinese Journal of Geophysics, 2017, 60(4): 1547–1556. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201704027.htm
    [15]
    高峰, 魏建新, 狄帮让, 等. 地层衰减定量模拟的地震物理模拟方法[J]. 地球物理学报, 2018, 61(12): 5019–5033. DOI: 10.6038/cjg2018L0671

    GAO Feng, WEI Jianxin, DI Bangrang, et al. A method of seismic physical modeling for quantitative simulation of formation attenuation[J]. Chinese Journal of Geophysics, 2018, 61(12): 5019–5033. DOI: 10.6038/cjg2018L0671
    [16]
    徐超, 狄帮让, 魏建新. 基于地震物理模拟的碳酸盐岩溶洞储层流体识别[J]. 石油物探, 2014, 53(1): 116–124. http://www.cnki.com.cn/Article/CJFDTotal-SYWT201401019.htm

    XU Chao, DI Bangrang, WEI Jianxin. Fluid identification of carbonate cave reservoir based on seismic physical modeling[J]. Geophysical Prospecting for Petroleum, 2014, 53(1): 116–124. http://www.cnki.com.cn/Article/CJFDTotal-SYWT201401019.htm
    [17]
    魏建新, 狄帮让, 王立华. 孔洞储层地震物理模拟研究[J]. 石油物探, 2008, 47(2): 156–160. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT200802012.htm

    WEI Jianxin, DI Bangrang, WANG Lihua. Seismic physical modeling for cavern reservoir[J]. Geophysical Prospecting for Petroleum, 2008, 47(2): 156–160. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT200802012.htm
    [18]
    李倩, 狄帮让, 魏建新. 碳酸盐岩储层孔洞体积的地震物理模拟估算[J]. 石油地球物理勘探, 2014, 49(6): 1147–1156. http://www.cnki.com.cn/Article/CJFDTotal-SYDQ201406023.htm

    LI Qian, DI Bangrang, WEI Jianxin. Carbonate reservoir cave volume estimation with seismic physical simulation[J]. Oil Geophysical Prospecting, 2014, 49(6): 1147–1156. http://www.cnki.com.cn/Article/CJFDTotal-SYDQ201406023.htm
    [19]
    石显新, 孙辉, 刘强, 等. 矿用探排水设备安全准入分析验证实验室(西安)竣工验收报告[R]. 西安: 中煤科工集团西安研究院有限公司, 2019: 55–130.

    SHI Xianxin, SUN Hui, LIU Qiang, et al. Safety access analysis and verification laboratory of mine exploration and drainage equipment(Xi'an) completion acceptance report[R]. Xi'an: Xi'an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., 2019: 55–130.
  • Cited by

    Periodical cited type(7)

    1. 周洋,陆承达,吴敏,陈鑫,姚宁平,宋海涛,张幼振. 深部地质钻进过程钻速时序融合建模方法. 煤田地质与勘探. 2025(02): 223-232 . 本站查看
    2. 王清峰,刘洋,陈航,史书翰,崔小超. 煤矿井下钻进工况参数智能控制技术发展与展望. 矿业安全与环保. 2025(01): 20-29 .
    3. 陈韬,张幼振,许超. 煤矿井下钻进工况智能识别算法研究与应用. 煤矿安全. 2025(03): 242-249 .
    4. 戴剑博,王忠宾,张琰,司垒,魏东,周文博,顾进恒,邹筱瑜,宋雨雨. 煤矿井下钻进速度影响因素及其智能预测方法研究. 煤炭科学技术. 2024(07): 209-221 .
    5. 张幼振,范强,陈龙,陈果,税洋,李旺年. 煤矿井下钻探数字化监测系统. 工矿自动化. 2024(07): 173-178 .
    6. 杨豫龙,曹卫华,甘超,黎育朋,吴敏. 深部地质钻进过程地层特征参数建模与安全预警研究进展. 煤田地质与勘探. 2024(10): 195-206 . 本站查看
    7. 张航盛,孙平贺,朱建新,邓盈盈,曹函,张晨,张鑫鑫,蒲英杰. 几种基于随钻参数地层识别方法的对比分析. 钻探工程. 2024(S1): 10-15 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return