Loading [MathJax]/jax/output/SVG/jax.js
LI Xiaoming, LIU Jirong, LIN Wen, MA Lihong, LIU Dexun, CHEN Yujie. Characteristics of the shale gas reservoirs and evaluation of sweet spots in Wufeng Formation and Longmaxi Formation in Jingmen exploration area[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 1-11. DOI: 10.3969/j.issn.1001-1986.2021.06.001
Citation: LI Xiaoming, LIU Jirong, LIN Wen, MA Lihong, LIU Dexun, CHEN Yujie. Characteristics of the shale gas reservoirs and evaluation of sweet spots in Wufeng Formation and Longmaxi Formation in Jingmen exploration area[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 1-11. DOI: 10.3969/j.issn.1001-1986.2021.06.001

Characteristics of the shale gas reservoirs and evaluation of sweet spots in Wufeng Formation and Longmaxi Formation in Jingmen exploration area

More Information
  • Received Date: April 12, 2021
  • Revised Date: June 15, 2021
  • Available Online: December 29, 2021
  • Published Date: December 24, 2021
  • In order to further clarify the resource potential of shale gas from Wufeng Formation to Longmaxi Formation in Jingmen exploration area, sweet spots were selected. The shale in Wufeng Formation and 1th Member of Longmaxi Formation of the well X was taken as the research object in this study. Using sliced kerogen, X-ray diffraction, nuclear magnetic resonance, micro nano CT scanning, geochemical analysis and other testing methods, combined with logging interpretation results, based on the petrology, organic geochemical and mineral composition, physical properties, pore types and structure characteristics and hydrocarbon content, the reservoir characteristics of Wufeng-1th Member of the Longmaxi Formation were evaluated, and the longitudinal shale gas sweet spots were optimized. The results show that: (1) Wufeng-1th Member of the Longmaxi Formation is mainly composed of siliceous shale mainly forming the reduction environments in the deep shelf facies. The natural gas in the high-quality shale section has high natural gas quality and excellent organic geochemical characteristics; (2) There is a positive correlation between porosity and permeability measured by various methods. The NMR T2 spectrum of water -saturated shale can be divided into 2 types and 5 types. The pore size distribution of shale reflected by different types of T2 spectrum is different. The isolated pores mainly exist in micropores smaller than 2 nm, which accounts for a very small proportion; (3) Based on the comprehensive evaluation of reservoir characteristics Long 11- Long 21 layer were selected as type I reservoir, the upper Wufeng Formation and Long 31 layers were classified as type Ⅱ reservoirs, and Long 41 layer as type Ⅲ reservoir. The upper Wufeng Formation-Long13 small layer (about 17.7 m thick) namely carbon-rich high silicon shale section is a shale gas sweet spot. The research results can provide a reference for determining the horizontal well target segments for shale gas exploration and development in Jingmen exploration area.
  • [1]
    张君峰, 许浩, 周志, 等. 鄂西宜昌地区页岩气成藏地质特征[J]. 石油学报, 2019, 40(8): 887-899.

    ZHANG Junfeng, XU Hao, ZHOU Zhi, et al. Geological characteristics of shale gas reservoir in Yichang area, western Hubei[J]. Acta Petrolei Sinica, 2019, 40(8): 887-899.
    [2]
    金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm

    JIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm
    [3]
    王鹏万, 李昌, 张磊, 等. 五峰组-龙马溪组储层特征及甜点层段评价: 以昭通页岩气示范区A井为例[J]. 煤炭学报, 2017, 42(11): 2925-2935. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201711018.htm

    WANG Pengwan, LI Chang, ZHANG Lei, et al. Characteristic of the shale gas reservoirs and evaluation of sweet spot in Wufeng-Longmaxi Formation: A case from the a well in Zhaotong shale gas demonstration zone[J]. Journal of China Coal Society, 2017, 42(11): 2925-2935. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201711018.htm
    [4]
    郭曼, 李贤庆, 张明扬, 等. 黔北地区牛蹄塘组页岩气成藏条件及有利区评价[J]. 煤田地质与勘探, 2015, 43(2): 37-43. DOI: 10.3969/j.issn.1001-1986.2015.02.008

    GUO Man, LI Xianqing, ZHANG Mingyang, et al. Reservoir-forming conditions and evaluation of favorable area of shale gas in Niutitang Formation in Northern Guizhou[J]. Coal Geology & Exploration, 2015, 43(2): 37-43. DOI: 10.3969/j.issn.1001-1986.2015.02.008
    [5]
    张慧, 魏小燕, 杨庆龙, 等. 海相页岩储层矿物质孔隙的形貌-成因类型[J]. 煤田地质与勘探, 2018, 46(4): 72-78. DOI: 10.3969/j.issn.1001-1986.2018.04.012

    ZHANG Hui, WEI Xiaoyan, YANG Qinglong, et al. The morphology-origin types of mineral pores in the marine shale reservoir[J]. Coal Geology & Exploration, 2018, 46(4): 72-78. DOI: 10.3969/j.issn.1001-1986.2018.04.012
    [6]
    梁迈, 谭先锋, 陈现军, 等. 渝东南地区五峰-龙马溪组层序地层特征及地质意义[J]. 煤田地质与勘探, 2018, 46(6): 40-51. DOI: 10.3969/j.issn.1001-1986.2018.06.006

    LIANG Mai, TAN Xianfeng, CHEN Xianjun, et al. Sequence stratigraphy of Wufeng-Longmaxi Formation in the southeastern Chongqing area and its geological significance[J]. Coal Geology & Exploration, 2018, 46(6): 40-51. DOI: 10.3969/j.issn.1001-1986.2018.06.006
    [7]
    马燕妮. 荆门地区龙马溪组页岩储层特征及含气性控制因素分析[D]. 成都: 西南石油大学, 2015.

    MA Yanni. Shale reservoir characteristics and gas bearing controlling factors of Longmaxi Formation in Jingmen area[D]. Chengdu: Southwest Petroleum University, 2015.
    [8]
    邓铭哲, 何登发. 当阳地区地质结构及其对宜昌地区志留系页岩气勘探的意义[J]. 成都理工大学学报(自然科学版), 2018, 45(4): 487-500. DOI: 10.3969/j.issn.1671-9727.2018.04.09

    DENG Mingzhe, HE Dengfa. The geological structure in the Dangyang area and its significance to the shale gas exploration in Yichang area, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2018, 45(4): 487-500. DOI: 10.3969/j.issn.1671-9727.2018.04.09
    [9]
    纪文明, 宋岩, 姜振学, 等. 四川盆地东南部龙马溪组页岩微-纳米孔隙结构特征及控制因素[J]. 石油学报, 2016, 37(2): 182-195. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602004.htm

    JI Wenming, SONG Yan, JIANG Zhenxue, et al. Micro-nano pore structure characteristics and its control factors of shale in Longmaxi Formation, southeastern Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(2): 182-195. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602004.htm
    [10]
    陈志鹏, 梁兴, 张介辉, 等. 昭通国家级示范区龙马溪组页岩气储层超压成因浅析[J]. 天然气地球科学, 2016, 27(3): 442-448.

    CHEN Zhipeng, LIANG Xing, ZHANG Jiehui, et al. Genesis analysis of shale reservoir over pressure of Longmaxi Formation in Zhaotong demonstration area, Dianqianbei Depression[J]. Natural Gas Geoscience, 2016, 27(3): 442-448.
    [11]
    邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701. DOI: 10.11698/PED.2015.06.01

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects(Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701. DOI: 10.11698/PED.2015.06.01
    [12]
    刘安, 包汉勇, 李海, 等. 湖北省上奥陶统五峰组-下志留统龙马溪组页岩气地质条件分析及有利区带预测[J]. 华南地质与矿产, 2016, 32(2): 126-134. DOI: 10.3969/j.issn.1007-3701.2016.02.004

    LIU An, BAO Hanyong, LI Hai, et al. Analysis of the shale gas geological conditions of the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Hubei Province and predict the favorable zone[J]. Geology and Mineral Resources of South China, 2016, 32(2): 126-134. DOI: 10.3969/j.issn.1007-3701.2016.02.004
    [13]
    徐祖新, 郭少斌. 基于NMR和X-CT的页岩储层孔隙结构研究[J]. 地球科学进展, 2014, 29(5): 624-631. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201405013.htm

    XU Zuxin, GUO Shaobin. Application of NMR and X-CT technology in the pore structure study of shale gas reservoirs[J]. Advances in Earth Science, 2014, 29(5): 624-631. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201405013.htm
    [14]
    李志清, 孙洋, 胡瑞林, 等. 基于核磁共振法的页岩纳米孔隙结构特征研究[J]. 工程地质学报, 2018, 26(3): 758-766. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803023.htm

    LI Zhiqing, SUN Yang, HU Ruilin, et al. Quantitative analysis for nanopore structure characteristics of shales using NMR and NMR cryoporometry[J]. Journal of Engineering Geology, 2018, 26(3): 758-766. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803023.htm
    [15]
    汪贺, 师永民, 徐大卫, 等. 非常规储层孔隙结构表征技术及进展[J]. 油气地质与采收率, 2019, 26(5): 21-30.

    WANG He, SHI Yongmin, XU Dawei, et al. Unconventional reservoir pore structure characterization techniques and progress[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(5): 21-30.
    [16]
    王琨, 周航宇, 赖杰, 等. 核磁共振技术在岩石物理与孔隙结构表征中的应用[J]. 仪器仪表学报, 2020, 41(2): 101-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202002014.htm

    WANG Kun, ZHOU Hangyu, LAI Jie, et al. Application of NMR technology in characterization of petrophysics and pore structure[J]. Chinese Journal of Scientific Instrument, 2020, 41(2): 101-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202002014.htm
    [17]
    李志愿, 崔云江, 关叶钦, 等. 基于孔径分布和T2谱的低孔渗储层渗透率确定方法[J]. 中国石油大学学报(自然科学版), 2018, 42(4): 34-40. DOI: 10.3969/j.issn.1673-5005.2018.04.004

    LI Zhiyuan, CUI Yunjiang, GUAN Yeqin, et al. Permeability confirmation method of low porosity and permeability reservoirs based on pore distribution and T2 spectrum[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(4): 34-40. DOI: 10.3969/j.issn.1673-5005.2018.04.004
    [18]
    付永红, 司马立强, 张楷晨, 等. 页岩岩心气测孔隙度测量参数初探与对比[J]. 特种油气藏, 2018, 25(3): 144-148. DOI: 10.3969/j.issn.1006-6535.2018.03.029

    FU Yonghong, SIMA Liqiang, ZHANG Kaichen, et al. Preliminary study and comparison of shale core gas-porosity test parameters[J]. Special Oil & Gas Reservoirs, 2018, 25(3): 144-148. DOI: 10.3969/j.issn.1006-6535.2018.03.029
    [19]
    葛明娜, 任收麦, 郭天旭, 等. 中国南方下古生界海相页岩气"优质层段"识别方法与应用[J]. 岩矿测试, 2020, 39(3): 350-361. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202003005.htm

    GE Mingna, REN Shoumai, GUO Tianxu, et al. Identification method of marine shale gas "high-quality layer" in the Lower Paleozoic area, southern China and its application[J]. Rock and Mineral Analysis, 2020, 39(3): 350-361. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202003005.htm
    [20]
    刘树根, 焦堃, 张金川, 等. 深层页岩气储层孔隙特征研究进展: 以四川盆地下古生界海相页岩层系为例[J]. 天然气工业, 2021, 41(1): 29-41.

    LIU Shugen, JIAO Kun, ZHANG Jinchuan, et al. Research progress on the pore characteristics of deep shale gas reservoirs: An example from the Lower Paleozoic marine shale in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 29-41.
    [21]
    LI Yufeng, SUN Wei, LIU Xiwu, et al. Study of the relationship between fractures and highly productive shale gas zones, Longmaxi Formation, Jiaoshiba area in eastern Sichuan[J]. Petroleum Science, 2018, 15(3): 498-509. DOI: 10.1007/s12182-018-0249-7
    [22]
    ZENG Qingcai, CHEN Sheng, HE Pei, et al. Quantitative prediction of shale gas sweet spots based on seismic data in Lower Silurian Longmaxi Formation, Weiyuan area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(3): 422-430. http://www.sciencedirect.com/science/article/pii/S1876380418300478
    [23]
    ZOU Caineng, YANG Zhi, PAN Songqi, et al. Shale gas formation and occurrence in China: An overview of the current status and future potential[J]. Acta Geologica Sinica(English Edition), 2016, 90(4): 1249-1283. http://www.onacademic.com/detail/journal_1000039656991710_67b6.html
    [24]
    张晨晨, 王玉满, 董大忠, 等. 四川盆地五峰组-龙马溪组页岩脆性评价与"甜点层"预测[J]. 天然气工业, 2016, 36(9): 51-60.

    ZHANG Chenchen, WANG Yuman, DONG Dazhong, et al. Evaluation of the Wufeng-Longmaxi shale brittleness and prediction of "sweet spot layers" in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(9): 51-60.
    [25]
    邹辰, 周松源, 梅珏, 等. 湖北当阳复向斜北部页岩气地质评价与有利区优选[J]. 海相油气地质, 2016, 21(2): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201602007.htm

    ZOU Chen, ZHOU Songyuan, MEI Jue, et al. Geological evaluation of Upper Ordovician-Lower Silurian gas-bearing shales and optional potential areas in the north of Dangyang Synclinorium, Hubei[J]. Marine Origin Petroleum Geology, 2016, 21(2): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201602007.htm
  • Cited by

    Periodical cited type(11)

    1. 张小波,郭宏,申宝柱. 煤矿采煤沉陷区模型分析及土地复垦技术研究. 山东煤炭科技. 2025(02): 170-174 .
    2. 郭马磊. 露天煤矿土地复垦与生态修复技术的思考研究. 内蒙古煤炭经济. 2025(03): 165-167 .
    3. 贾媛. 准格尔矿区植被覆盖度演变趋势及驱动力分析. 煤质技术. 2024(05): 50-58 .
    4. 焦晓亮,李明超,毕银丽,田野. 露天矿排土场不同植被恢复时间对林下植物群落及土壤性状影响. 矿业研究与开发. 2024(11): 172-183 .
    5. 李聪聪,王佟,赵欣,王伟超,梁振新. 高原高寒矿区生态修复中的煤炭资源保护技术. 煤田地质与勘探. 2024(11): 1-11 . 本站查看
    6. 何继,崔瑞豪,李虎民,王磊,马飞,王培俊. 基于无人机的人工植被分布识别与重建效果评价. 中国煤炭. 2024(11): 142-152 .
    7. 张洪. 煤炭露天开采用地模式改革探讨. 煤炭工程. 2023(01): 23-26 .
    8. 官炎俊,王娟,周伟,曹银贵,白中科. 露天矿区土地复垦适应性管理:内涵解析与框架构建. 中国土地科学. 2023(02): 102-112 .
    9. 杨璐璐,王立徽. 基于“两山”理论的“矿农协同”生态整治与矿区农民农村共同富裕. 理论与现代化. 2023(04): 71-81 .
    10. 辛建宝,周国驰. 胜利西三矿全生命周期生态治理规划探索. 露天采矿技术. 2023(04): 70-73+77 .
    11. 侯金武,余洋. 试论科学推进矿山生态修复. 矿业安全与环保. 2023(06): 1-6+15 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (304) PDF downloads (45) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return