HU Weiyue, JI Yadong, HUANG Huan. Mine water inflow modes and scientific design of drainage boreholes in roof confined aquifer of coal seam[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 139-146. DOI: 10.3969/j.issn.1001-1986.2021.05.015
Citation: HU Weiyue, JI Yadong, HUANG Huan. Mine water inflow modes and scientific design of drainage boreholes in roof confined aquifer of coal seam[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 139-146. DOI: 10.3969/j.issn.1001-1986.2021.05.015

Mine water inflow modes and scientific design of drainage boreholes in roof confined aquifer of coal seam

More Information
  • Received Date: May 12, 2021
  • Revised Date: July 05, 2021
  • Available Online: November 05, 2021
  • Published Date: October 24, 2021
  • Aiming at the uncertainty of mine water inflow mode, this paper analyzes the spatiotemporal variation characteristics of mine water inflow at first, and get a conclusion that the mine water is composed of static storage and dynamic recharge. And the static storage is mainly affected by weighting interval, the aquifer thickness of caving and fracture zone height and specific yield; the dynamic recharge is mainly affected by caving and fracture zone height and specific yield, hydraulic gradient in permeable flow field and discharge section area. According to the spatial relationships between water conducted fissure and roof aquifer of coal seam, the mine water inflow mode is classified into 3 types: partially penetrating well with water entering from well bottom, partially penetrating well with water entering from well bottom and wall, and completely penetrating well with water entering from well wall. And then the different calculation formulas of dynamic recharge for three mine water inflow modes are given based on groundwater seepage theory. For the large quantity drainage boreholes and excess quantity drainage, the optimal design concept of drainage borehole is proposed, which consists of caving and fracture zone height controlling boreholes depth, influence radius of single hole controlling borehole layout, and stable time of drainage controlling advanced drainage time, so as to optimize the layout of drainage water and drainage borehole, and establish the system of drainage of roof aquifers. The results offer an alternative for the scientific connotation of calculus formula and control methods for mine roof water inflow, which has practical guiding significance for prevention and control of mine roof water disaster.
  • [1]
    钱鸣高, 缪协兴, 许家林. 岩层控制的关键层理论[M]. 徐州: 中国矿业大学出版社, 2003.

    QIAN Minggao, MIU Xiexing, XU Jialin. The theory of key strata in ground control[M]. Xuzhou: China University of Mining and Technology Press, 2003.
    [2]
    梁世伟. 薄基岩浅埋煤层顶板突水机理的研究[J]. 矿业安全与环保, 2013, 40(3): 21–24. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201303005.htm

    LIANG Shiwei. Research on roof water inrush mechanics of shallow coal seam with thin base rock[J]. Mining Safety & Environmental Protection, 2013, 40(3): 21–24. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201303005.htm
    [3]
    刘东. 浅埋煤层顶板突水机理研究[D]. 西安: 西安科技大学, 2017.

    LIU Dong. Research on roof water inrush mechanics of shallow seam[D]. Xi'an: Xi'an University of Science and Technology, 2017.
    [4]
    李超峰, 虎维岳. 回采工作面顶板复合含水层涌水量时空组成及过程预测方法[J]. 水文地质工程地质, 2018, 45(3): 1–13. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201803001.htm

    LI Chaofeng, HU Weiyue. Prediction method of mine water inflow regime from a layered extra-thick aquifer[J]. Hydrogeology & Engineering Geology, 2018, 45(3): 1–13. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201803001.htm
    [5]
    虎维岳. 浅埋煤层回采中顶板含水层涌水量的时空动态预测技术[J]. 煤田地质与勘探, 2016, 44(5): 91–96. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=01bd9eb3-c4c2-4c5a-b1bb-7e5b76dfddc1

    HU Weiyue. Water inflows prediction technique of water inflow from roof aquifer during extraction of shallow seam[J]. Coal Geology & Exploration, 2016, 44(5): 91–96. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=01bd9eb3-c4c2-4c5a-b1bb-7e5b76dfddc1
    [6]
    刘洋, 张幼振. 浅埋煤层工作面涌水量预测方法研究[J]. 采矿与安全工程学报, 2010, 27(1): 116–120. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201001024.htm

    LIU Yang, ZHANG Youzhen. Forecast method for water inflow from working face in shallowly buried coal seam[J]. Journal of Mining & Safety Engineering, 2010, 27(1): 116–120. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201001024.htm
    [7]
    陈酩知, 刘树才, 杨国勇. 矿井涌水量预测方法的发展[J]. 工程地球物理学报, 2009, 6(1): 68–72. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ200901016.htm

    CHEN Mingzhi, LIU Shucai, YANG Guoyong. The development of mining water inflow predict method[J]. Chinese Journal of Engineering Geophysics, 2009, 6(1): 68–72. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ200901016.htm
    [8]
    管恩太, 武强. 矿井涌水量预测评述[J]. 中州煤炭, 2005(1): 7–8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT200501004.htm

    GUAN Entai, WU Qiang. The review on predicting mine discharge[J]. Zhongzhou Coal, 2005(1): 7–8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT200501004.htm
    [9]
    虎维岳, 闫丽. 对矿井涌水量预测问题的分析与思考[J]. 煤炭科学技术, 2016, 44(1): 13–18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601003.htm

    HU Weiyue, YAN Li. Analysis and consideration on prediction problems of mine water inflow volume[J]. Coal Science & Technology, 2016, 44(1): 13–18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601003.htm
    [10]
    黄欢. 锦界煤矿顶板水疏放技术优化研究[D]. 北京: 煤炭科学研究总院, 2017.

    HUANG Huan. Optimization research on dewatering technology of roof water in Jinjie mine[D]. Beijing: China Coal Research Institute, 2017.
    [11]
    周振方, 靳德武, 虎维岳, 等. 煤矿工作面推采采空区涌水双指数动态衰减动力学研究[J]. 煤炭学报, 2018, 43(9): 2587–2594. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809027.htm

    ZHOU Zhenfang, JIN Dewu, HU Weiyue, et al. Double-exponential variation law of water-inflow from roof aquifer in goaf of working face with mining process[J]. Journal of China Coal Society, 2018, 43(9): 2587–2594. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809027.htm
    [12]
    赵宝峰. 煤层顶板砂岩含水层疏放水效果评价[J]. 矿业安全与环保, 2013, 40(6): 36–38. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201306012.htm

    ZHAO Baofeng. Evaluation of drainage effect of roof sandstone aquifer of coal seam[J]. Mining Safety & Environmental Protection, 2013, 40(6): 36–38. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201306012.htm
    [13]
    刘英锋, 郭小铭. 导水裂缝带部分波及顶板含水层条件下涌水量预测[J]. 煤田地质与勘探, 2016, 44(5): 97–101. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=d144ee55-944b-4117-9d58-5fde7608de22

    LIU Yingfeng, GUO Xiaoming. Prediction of water inflow in roof aquifer affected by water-flowing fracture zone[J]. Coal Geology & Exploration, 2016, 44(5): 97–101. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=d144ee55-944b-4117-9d58-5fde7608de22
    [14]
    薛禹群. 地下水动力学原理[M]. 北京: 地质出版社, 1986.

    XUE Yuqun. Groundwater dynamics[M]. Beijing: Geological Publishing House, 1986.
    [15]
    吴吉春, 薛禹群. 地下水动力学[M]. 北京: 中国水利水电出版社, 2009.

    WU Jichun, XUE Yuqun. Groundwater dynamics[M]. Beijing: China Water & Power Press, 2009.
    [16]
    覃意新. 门克庆煤矿顶板疏放水设计优化研究[J]. 建井技术, 2019, 40(5): 11–15. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS201905005.htm

    QIN Yixin. Optimized study on design of mine roof water drainage in Menkeqing mine[J]. Mine Construction Technology, 2019, 40(5): 11–15. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS201905005.htm
    [17]
    赵春虎, 董书宁, 王皓, 等. 采煤工作面顶板含水层井下疏水钻孔涌水规律数值分析[J]. 煤炭学报, 2020, 45(增刊1): 405–414. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S1044.htm

    ZHAO Chunhu, DONG Shuning, WANG Hao, et al. Analysis of water inrush from boreholes for drainage of confined aquifer by upward boreholes in underground coal mining face[J]. Journal of China Coal Society, 2020, 45(Sup. 1): 405–414. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S1044.htm
  • Cited by

    Periodical cited type(8)

    1. 段志鸿. 掘进工作面顶板富水区超前疏放治理技术. 煤炭与化工. 2024(01): 88-90+134 .
    2. 赵常凤,刘正文,沈礼锋,宋峰,张亮,张洪波. 煤矿井下含水层超前疏放水钻孔涌水量衰减规律数值模拟分析. 矿冶. 2024(01): 15-20 .
    3. 张辉,吕彪,马爱军,安志伟,马亚杰,张海博,陈丹丹. 煤层顶板含水岩性层划分与富水性评价方法. 煤炭技术. 2024(03): 203-207 .
    4. 刘守强,靳立创,郭森林,阎宏图,李沛涛,丛秀蓁. 纳林河二号矿井工作面顶板疏放水方案设计及优化. 煤炭工程. 2024(06): 117-121 .
    5. 王廷. 复杂水文地质条件下疏放水钻孔施工参数优化研究. 陕西煤炭. 2024(07): 105-108+137 .
    6. 谢波,梁帮治,杨强,段雨安. 地层特征重构下的气井射孔位置回归优化. 人工智能科学与工程. 2024(04): 52-59 .
    7. 马亚杰,刘莉,张辉,马爱军,翟俊杰,陈丹丹. 缓倾斜地层倾角对钻孔疏放水影响的数值模拟. 煤矿安全. 2023(05): 72-77 .
    8. 刘洋,杨建,周建军. 蒙陕深埋矿区工作面涌水量全生命周期演化规律. 煤田地质与勘探. 2022(12): 152-158 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (314) PDF downloads (75) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return