HU Weiyue, JI Yadong, HUANG Huan. Mine water inflow modes and scientific design of drainage boreholes in roof confined aquifer of coal seam[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 139-146. DOI: 10.3969/j.issn.1001-1986.2021.05.015
Citation: HU Weiyue, JI Yadong, HUANG Huan. Mine water inflow modes and scientific design of drainage boreholes in roof confined aquifer of coal seam[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 139-146. DOI: 10.3969/j.issn.1001-1986.2021.05.015

Mine water inflow modes and scientific design of drainage boreholes in roof confined aquifer of coal seam

More Information
  • Received Date: May 12, 2021
  • Revised Date: July 05, 2021
  • Available Online: November 05, 2021
  • Published Date: October 24, 2021
  • Aiming at the uncertainty of mine water inflow mode, this paper analyzes the spatiotemporal variation characteristics of mine water inflow at first, and get a conclusion that the mine water is composed of static storage and dynamic recharge. And the static storage is mainly affected by weighting interval, the aquifer thickness of caving and fracture zone height and specific yield; the dynamic recharge is mainly affected by caving and fracture zone height and specific yield, hydraulic gradient in permeable flow field and discharge section area. According to the spatial relationships between water conducted fissure and roof aquifer of coal seam, the mine water inflow mode is classified into 3 types: partially penetrating well with water entering from well bottom, partially penetrating well with water entering from well bottom and wall, and completely penetrating well with water entering from well wall. And then the different calculation formulas of dynamic recharge for three mine water inflow modes are given based on groundwater seepage theory. For the large quantity drainage boreholes and excess quantity drainage, the optimal design concept of drainage borehole is proposed, which consists of caving and fracture zone height controlling boreholes depth, influence radius of single hole controlling borehole layout, and stable time of drainage controlling advanced drainage time, so as to optimize the layout of drainage water and drainage borehole, and establish the system of drainage of roof aquifers. The results offer an alternative for the scientific connotation of calculus formula and control methods for mine roof water inflow, which has practical guiding significance for prevention and control of mine roof water disaster.
  • [1]
    钱鸣高, 缪协兴, 许家林. 岩层控制的关键层理论[M]. 徐州: 中国矿业大学出版社, 2003.

    QIAN Minggao, MIU Xiexing, XU Jialin. The theory of key strata in ground control[M]. Xuzhou: China University of Mining and Technology Press, 2003.
    [2]
    梁世伟. 薄基岩浅埋煤层顶板突水机理的研究[J]. 矿业安全与环保, 2013, 40(3): 21–24. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201303005.htm

    LIANG Shiwei. Research on roof water inrush mechanics of shallow coal seam with thin base rock[J]. Mining Safety & Environmental Protection, 2013, 40(3): 21–24. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201303005.htm
    [3]
    刘东. 浅埋煤层顶板突水机理研究[D]. 西安: 西安科技大学, 2017.

    LIU Dong. Research on roof water inrush mechanics of shallow seam[D]. Xi'an: Xi'an University of Science and Technology, 2017.
    [4]
    李超峰, 虎维岳. 回采工作面顶板复合含水层涌水量时空组成及过程预测方法[J]. 水文地质工程地质, 2018, 45(3): 1–13. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201803001.htm

    LI Chaofeng, HU Weiyue. Prediction method of mine water inflow regime from a layered extra-thick aquifer[J]. Hydrogeology & Engineering Geology, 2018, 45(3): 1–13. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201803001.htm
    [5]
    虎维岳. 浅埋煤层回采中顶板含水层涌水量的时空动态预测技术[J]. 煤田地质与勘探, 2016, 44(5): 91–96. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=01bd9eb3-c4c2-4c5a-b1bb-7e5b76dfddc1

    HU Weiyue. Water inflows prediction technique of water inflow from roof aquifer during extraction of shallow seam[J]. Coal Geology & Exploration, 2016, 44(5): 91–96. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=01bd9eb3-c4c2-4c5a-b1bb-7e5b76dfddc1
    [6]
    刘洋, 张幼振. 浅埋煤层工作面涌水量预测方法研究[J]. 采矿与安全工程学报, 2010, 27(1): 116–120. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201001024.htm

    LIU Yang, ZHANG Youzhen. Forecast method for water inflow from working face in shallowly buried coal seam[J]. Journal of Mining & Safety Engineering, 2010, 27(1): 116–120. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201001024.htm
    [7]
    陈酩知, 刘树才, 杨国勇. 矿井涌水量预测方法的发展[J]. 工程地球物理学报, 2009, 6(1): 68–72. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ200901016.htm

    CHEN Mingzhi, LIU Shucai, YANG Guoyong. The development of mining water inflow predict method[J]. Chinese Journal of Engineering Geophysics, 2009, 6(1): 68–72. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ200901016.htm
    [8]
    管恩太, 武强. 矿井涌水量预测评述[J]. 中州煤炭, 2005(1): 7–8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT200501004.htm

    GUAN Entai, WU Qiang. The review on predicting mine discharge[J]. Zhongzhou Coal, 2005(1): 7–8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT200501004.htm
    [9]
    虎维岳, 闫丽. 对矿井涌水量预测问题的分析与思考[J]. 煤炭科学技术, 2016, 44(1): 13–18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601003.htm

    HU Weiyue, YAN Li. Analysis and consideration on prediction problems of mine water inflow volume[J]. Coal Science & Technology, 2016, 44(1): 13–18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601003.htm
    [10]
    黄欢. 锦界煤矿顶板水疏放技术优化研究[D]. 北京: 煤炭科学研究总院, 2017.

    HUANG Huan. Optimization research on dewatering technology of roof water in Jinjie mine[D]. Beijing: China Coal Research Institute, 2017.
    [11]
    周振方, 靳德武, 虎维岳, 等. 煤矿工作面推采采空区涌水双指数动态衰减动力学研究[J]. 煤炭学报, 2018, 43(9): 2587–2594. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809027.htm

    ZHOU Zhenfang, JIN Dewu, HU Weiyue, et al. Double-exponential variation law of water-inflow from roof aquifer in goaf of working face with mining process[J]. Journal of China Coal Society, 2018, 43(9): 2587–2594. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809027.htm
    [12]
    赵宝峰. 煤层顶板砂岩含水层疏放水效果评价[J]. 矿业安全与环保, 2013, 40(6): 36–38. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201306012.htm

    ZHAO Baofeng. Evaluation of drainage effect of roof sandstone aquifer of coal seam[J]. Mining Safety & Environmental Protection, 2013, 40(6): 36–38. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201306012.htm
    [13]
    刘英锋, 郭小铭. 导水裂缝带部分波及顶板含水层条件下涌水量预测[J]. 煤田地质与勘探, 2016, 44(5): 97–101. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=d144ee55-944b-4117-9d58-5fde7608de22

    LIU Yingfeng, GUO Xiaoming. Prediction of water inflow in roof aquifer affected by water-flowing fracture zone[J]. Coal Geology & Exploration, 2016, 44(5): 97–101. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=d144ee55-944b-4117-9d58-5fde7608de22
    [14]
    薛禹群. 地下水动力学原理[M]. 北京: 地质出版社, 1986.

    XUE Yuqun. Groundwater dynamics[M]. Beijing: Geological Publishing House, 1986.
    [15]
    吴吉春, 薛禹群. 地下水动力学[M]. 北京: 中国水利水电出版社, 2009.

    WU Jichun, XUE Yuqun. Groundwater dynamics[M]. Beijing: China Water & Power Press, 2009.
    [16]
    覃意新. 门克庆煤矿顶板疏放水设计优化研究[J]. 建井技术, 2019, 40(5): 11–15. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS201905005.htm

    QIN Yixin. Optimized study on design of mine roof water drainage in Menkeqing mine[J]. Mine Construction Technology, 2019, 40(5): 11–15. https://www.cnki.com.cn/Article/CJFDTOTAL-JJJS201905005.htm
    [17]
    赵春虎, 董书宁, 王皓, 等. 采煤工作面顶板含水层井下疏水钻孔涌水规律数值分析[J]. 煤炭学报, 2020, 45(增刊1): 405–414. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S1044.htm

    ZHAO Chunhu, DONG Shuning, WANG Hao, et al. Analysis of water inrush from boreholes for drainage of confined aquifer by upward boreholes in underground coal mining face[J]. Journal of China Coal Society, 2020, 45(Sup. 1): 405–414. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2020S1044.htm
  • Related Articles

    [1]WANG Beifang, LIANG Bing, ZHANG Jing, CHI Haibo, HUANG Pujiang. Comprehensive outburst prevention technology of outburst-prone coal seam uncovered by crossdrift in Hongshan coal mine[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 86-93. DOI: 10.3969/j.issn.1001-1986.2019.05.012
    [2]LI Xinjie, JIA Jinzhang, Li Bing. Prediction method of coal and gas outburst based on SAGA-FCM[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(2): 14-18. DOI: 10.3969/j.issn.1001-1986.2016.02.003
    [3]WEI Chunfu, LI Huamin, YUAN Ruifu. Gas pressure effect in the process of coal and gas outburst[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(6): 24-28. DOI: 10.3969/j.issn.1001-1986.2014.06.005
    [4]XU Gang, LI Shugang, MA Ruifeng. Analysis on coal and gas outburst mechanism of beding shear zone[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(4): 16-20. DOI: 10.3969/j.issn.1001-1986.2014.04.004
    [5]HU Wei-yue, LI Jing, WANG Shou-quan. The flowing and outburst mechanism of gas in coal-based pore and fractured medium[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(4): 6-8,14. DOI: 10.3969/j.issn.1001-1986.2009.04.002
    [6]LIU Jin-hai, FENG Tao, XIE Dong-hai, LIU Hui. Prediction method of coal and gas outburst by distance discriminant analysis[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(1): 26-28,32.
    [7]ZHANG Xu-liang, PENG Su-ping, ZHANG Zi-xu, YUAN Chong-fu. Mathematical geology model of coal and gas outburst[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(1): 14-17.
    [8]ZHANG Xu-liang, PENG Su-ping, ZHANG Zi-xu, YUAN Chong-fu. Study of sensitive geology factors of coal and gas outburst[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(2): 7-10.
    [9]He Jun, Yuan Dongsheng, Liu Mingju, Zhang Zimin. FRACTAL PREDICTION RESEARCH ON COAL AND GAS OUTBURST ZONES[J]. COAL GEOLOGY & EXPLORATION, 2000, 28(3): 31-33.
    [10]Shi Xianxin, Cai Shuanrong, Feng Hong, Li Hua. THE PREDICTION OF COAL AND GAS OUTBURST USING THE ACOUSTIC EMISSION TECHNIQUE[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(3): 60-65.
  • Cited by

    Periodical cited type(11)

    1. 张小波,郭宏,申宝柱. 煤矿采煤沉陷区模型分析及土地复垦技术研究. 山东煤炭科技. 2025(02): 170-174 .
    2. 郭马磊. 露天煤矿土地复垦与生态修复技术的思考研究. 内蒙古煤炭经济. 2025(03): 165-167 .
    3. 贾媛. 准格尔矿区植被覆盖度演变趋势及驱动力分析. 煤质技术. 2024(05): 50-58 .
    4. 焦晓亮,李明超,毕银丽,田野. 露天矿排土场不同植被恢复时间对林下植物群落及土壤性状影响. 矿业研究与开发. 2024(11): 172-183 .
    5. 李聪聪,王佟,赵欣,王伟超,梁振新. 高原高寒矿区生态修复中的煤炭资源保护技术. 煤田地质与勘探. 2024(11): 1-11 . 本站查看
    6. 何继,崔瑞豪,李虎民,王磊,马飞,王培俊. 基于无人机的人工植被分布识别与重建效果评价. 中国煤炭. 2024(11): 142-152 .
    7. 张洪. 煤炭露天开采用地模式改革探讨. 煤炭工程. 2023(01): 23-26 .
    8. 官炎俊,王娟,周伟,曹银贵,白中科. 露天矿区土地复垦适应性管理:内涵解析与框架构建. 中国土地科学. 2023(02): 102-112 .
    9. 杨璐璐,王立徽. 基于“两山”理论的“矿农协同”生态整治与矿区农民农村共同富裕. 理论与现代化. 2023(04): 71-81 .
    10. 辛建宝,周国驰. 胜利西三矿全生命周期生态治理规划探索. 露天采矿技术. 2023(04): 70-73+77 .
    11. 侯金武,余洋. 试论科学推进矿山生态修复. 矿业安全与环保. 2023(06): 1-6+15 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (312) PDF downloads (75) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return