LI Xiaolong. Development and application of borehole sealing technology for water-sand inrush from Ordovician limestone aquifer in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 192-197. DOI: 10.3969/j.issn.1001-1986.2021.04.023
Citation: LI Xiaolong. Development and application of borehole sealing technology for water-sand inrush from Ordovician limestone aquifer in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 192-197. DOI: 10.3969/j.issn.1001-1986.2021.04.023

Development and application of borehole sealing technology for water-sand inrush from Ordovician limestone aquifer in coal mine

More Information
  • Received Date: December 19, 2020
  • Revised Date: May 18, 2021
  • Available Online: September 09, 2021
  • Published Date: August 24, 2021
  • The technology for surface sand filling and underground grouting is adopted to control the karst collapse column of Ordovician limestone in Sangshuping Coal Mine. However, there are serious water-sand inrushes in three conventional inspection boreholes, so it is of great difficulty to seal them. Putting wooden wedges and reverse wire packers into the boreholes all fail. In order to solve this problem, the grouting sealing technology with pressure replacement is proposed in this paper. Firstly, water larger than the casing pipe volume is injected into the borehole to ensure a clear borehole and to avoid sand filling into the casing pipe, resulting in the sealing depth not reaching the stable rock layer below the casing. After that, a lower pumping volume is adopted to repeatedly inject cement slurry larger than the casing volume into the borehole. Finally, after the cement slurry is solidified, a small diameter bit is used to drill outside the casing to check the sealing quality of the large diameter boreholes. Three conventional inspection boreholes are successfully sealed. In the engineering practice, it is found that the water-cement ratio of the cement slurry for early grouting borehole sealing should be 1︰1, and the single setting time should be 3 to 4 days. Prolonging the cement setting time can improve the quality of borehole sealing. This borehole sealing technology is applicable to underground narrow space operation, which can prevent water-sand inrushes from the orifice, ensure the sealing quality and personnel safety, and provide a technical reference for sealing similar water-sand inrushes.
  • [1]
    李晓龙, 董书宁, 刘恺德. 多层含水层分层止水技术研究进展[J]. 煤矿安全, 2020, 51(2): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202002018.htm

    LI Xiaolong, DONG Shuning, LIU Kaide. Research progress of the stratified water stop technology for multilayer aquifer[J]. Safety in Coal Mines, 2020, 51(2): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202002018.htm
    [2]
    郑纲, 徐小兵, 何渊, 等. 厚煤层放顶煤开采底板突水机理及水害探查技术[J]. 煤田地质与勘探, 2019, 47(增刊1): 7-13. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c7470810-df73-47d6-a52c-1ffc73c50d2b

    ZHENG Gang, XU Xiaobing, HE Yuan, et al. Mechanism of Ordovician limestone water inrush from the floor of caving mining face in thick coal seam and water hazard detection technology of nearly horizontal borehole[J]. Coal Geology & Exploration, 2019, 47(Sup. 1): 7-13. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c7470810-df73-47d6-a52c-1ffc73c50d2b
    [3]
    许延春, 李江华, 刘白宙. 焦作矿区煤层底板注浆加固工作面突水原因与防治[J]. 煤田地质与勘探, 2014, 42(4): 50-54. DOI: 10.3969/j.issn.1001-1986.2014.04.011

    XU Yanchun, LI Jianghua, LIU Baizhou. Reinforcement of working face by grouting in floor in Jiaozuo coal mining area[J]. Coal Geology & Exploration, 2014, 42(4): 50-54. DOI: 10.3969/j.issn.1001-1986.2014.04.011
    [4]
    DONG Shuning, ZHENG Liwei, TANG Shengli, et al. A scientometric analysis of trends in coal mine water inrush prevention and control for the period 2000-2019[J]. Mine Water and the Environment, 2020, 39: 3-12. DOI: 10.1007/s10230-020-00661-2
    [5]
    刘其声. 关于突水系数的讨论[J]. 煤田地质与勘探, 2009, 37(4): 34-37. DOI: 10.3969/j.issn.1001-1986.2009.04.009

    LIU Qisheng. A discussion on water inrush coefficient[J]. Coal Geology & Exploration, 2009, 37(4): 34-37. DOI: 10.3969/j.issn.1001-1986.2009.04.009
    [6]
    李晓龙, 穆鹏飞. 复采条件下远距离截引老空水技术[J]. 煤矿安全, 2020, 51(12): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202012015.htm

    LI Xiaolong, MU Pengfei. Technology of long-distance draining goaf water under the condition of repeated mining[J]. Safety in Coal Mines, 2020, 51(12): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202012015.htm
    [7]
    靳德武, 刘其声, 王琳, 等. 煤矿(床)水文地质学的研究现状及展望[J]. 煤田地质与勘探, 2009, 37(5): 28-31. DOI: 10.3969/j.issn.1001-1986.2009.05.007

    JIN Dewu, LIU Qisheng, WANG Lin, et al. Development and prospect of coal deposit hydrogeology[J]. Coal Geology & Exploration, 2009, 37(5): 28-31. DOI: 10.3969/j.issn.1001-1986.2009.05.007
    [8]
    杨志斌, 董书宁. 压水试验定量评价单孔注浆效果影响因素分析[J]. 煤矿安全, 2018, 49(6): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201806049.htm

    YANG Zhibin, DONG Shuning. Influence factors analysis of quantitative evaluation of single borehole grouting effect by water pressure test[J]. Safety in Coal Mines, 2018, 49(6): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201806049.htm
    [9]
    赵庆彪, 赵兵文, 付永刚, 等. 大采深矿井地面区域治理奥灰水害关键技术研究[J]. 煤炭科学技术, 2016, 44(8): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201608003.htm

    ZHAO Qingbiao, ZHAO Bingwen, FU Yonggang, et al. Research on key technology to control Ordovician limestone water disaster on surface region of deep mining depth mine[J]. Coal Science and Technology, 2016, 44(8): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201608003.htm
    [10]
    王苏健, 陈通, 李涛, 等. 承压水体上保水采煤注浆材料及技术[J]. 煤炭学报, 2017, 42(1): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701018.htm

    WANG Sujian, CHEN Tong, LI Tao, et al. Grouting material and technique in water protection mining above confined water[J]. Journal of China Coal Society, 2017, 42(1): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701018.htm
    [11]
    董书宁, 王皓, 张文忠. 华北型煤田奥灰顶部利用与改造判别准则及底板破坏深度[J]. 煤炭学报, 2019, 44(7): 2216-2226. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201907029.htm

    DONG Shuning, WANG Hao, ZHANG Wenzhong. Judgement criteria with utilization and grouting reconstruction of top Ordovician limestone and floor damage depth in North China coal field[J]. Journal of China Coal Society, 2019, 44(7): 2216-2226. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201907029.htm
    [12]
    LI Xiaolong, DONG Shuning, LIU Kaide. Prevention and control of water inrushes from subseam karstic Ordovician limestone during coal mining above ultra-thin aquitards[J]. Mine Water and the Environment, 2021. doi: https://doi.org/ 10.1007/s10230-021-00765-3
    [13]
    代革联, 薛小渊, 许珂, 等. 基于脆弱性指数法的韩城矿区11号煤层底板突水危险性评价[J]. 煤田地质与勘探, 2017, 45(4): 112-117. DOI: 10.3969/j.issn.1001-1986.2017.04.020

    DAI Gelian, XUE Xiaoyuan, XU Ke, et al. Risk assessment of water inrush of No. 11 coal seam floor in Hancheng mining area on the basis of vulnerability index method[J]. Coal Geology & Exploration, 2017, 45(4): 112-117. DOI: 10.3969/j.issn.1001-1986.2017.04.020
    [14]
    李晓龙, 张红强, 郝世俊, 等. 煤层底板奥灰水害防治定向钻孔施工关键技术[J]. 煤炭科学技术, 2019, 47(5): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201905010.htm

    LI Xiaolong, ZHANG Hongqiang, HAO Shijun, et al. Key techniques for directional drilling & construction for control of coal floor Ordovician limestone karst water disaster[J]. Coal Science and Technology, 2019, 47(5): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201905010.htm
    [15]
    李泉新. 煤层底板超前注浆加固定向钻孔钻进技术[J]. 煤炭科学技术, 2014, 42(1): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201401035.htm

    LI Quanxin. Drilling technology of directional drilled borehole for advance grouting reinforcement of seam floor[J]. Coal Science and Technology, 2014, 42(1): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201401035.htm
    [16]
    董书宁, 郭小铭, 刘其声, 等. 华北型煤田底板灰岩含水层超前区域治理模式与选择准则[J]. 煤田地质与勘探, 2020, 48(4): 1-10. DOI: 10.3969/j.issn.1001-1986.2020.04.001

    DONG Shuning, GUO Xiaoming, LIU Qisheng, et al. Model and selection criterion of zonal pre-act grouting to prevent mine water disasters of coal floor limestone aquifer in North China type coalfield[J]. Coal Geology & Exploration, 2020, 48(4): 1-10. DOI: 10.3969/j.issn.1001-1986.2020.04.001
    [17]
    李晓龙, 董书宁, 郝世俊, 等. 煤矿井下奥灰含水层大流量涌水涌沙钻孔成套封孔方法:

    CN201910917389.9[P]. 2020-01-17. LI Xiaolong, DONG Shuning, HAO Shijun, et al. A complete set of hole sealing method for large-flow water and sand inrush drilling holes in Ordovician aquifer in underground coal mine: CN201910917389.9[P]. 2020-01-17.
    [18]
    李涛, 高颖, 艾德春, 等. 基于承压水单孔放水实验的底板水害精准注浆防治[J]. 煤炭学报, 2019, 44(8): 2494-2501. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908024.htm

    LI Tao, GAO Ying, AI Dechun, et al. Floor precise grouting of prevention and control of water based on confined water single-hole drainage experiment[J]. Journal of China Coal Society, 2019, 44(8): 2494-2501. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908024.htm
  • Related Articles

    [1]WANG Shuangming, SUN Qiang, HU Xin, GENG Jishi, HOU Enke, WANG Shengquan, ZHOU Shutao, SHI Qingmin, YUAN Shihao, CHEN Kai, SONG Shijie. Coal mining-induced composite damage to geological bodies and geological guarantee against damage reduction[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(1): 1-11. DOI: 10.12363/issn.1001-1986.24.12.0813
    [2]WANG Shuangming, SUN Qiang, HU Xin, GENG Jishi, HOU Enke, WANG Shengquan, ZHOU Shutao, SHI Qingmin, YUAN Shihao, CHEN Kai, SONG Shijie. Coal mining-induced composite damage to geological bodies and geological guarantee against damage reduction[J]. COAL GEOLOGY & EXPLORATION.
    [3]WANG Shuangming, SUN Qiang, GENG Jishi, YUAN Shihao, GU Chao, YANG Duoxing, NIU Chao, LU Tuo, GUO Chen, ZHANG Huanlan, HUANG Haiyu, SHI Qingmin. Geological Support Technology Framework System for Mining Induced Disasters and Damage Reduction Mining of Geological Conditions in Western Mining Area[J]. COAL GEOLOGY & EXPLORATION.
    [4]WANG Guofa, ZHANG Jianzhong, XUE Guohua, LIU Zaibin, LIU Qing, LI Mei, LIU Junfeng, CHENG Jian, ZHANG Xueliang. Progress and reflection of intelligent geological guarantee technology in coal mining face[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(2): 12-26. DOI: 10.12363/issn.1001-1986.23.02.0062
    [5]JIN Dewu, LI Chaofeng, LIU Yingfeng, CAO Haitao, REN Dengjun, WANG Hongliang, ZHANG Jinkui, HUANG Yang, YANG Guodong, GUO Kang, FAN Min, LIU Chenkai. Characteristics of roof water hazard of coal seam in Huanglong Coalfield and key technologies for prevention and control[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(1): 205-213. DOI: 10.12363/issn.1001-1986.22.10.0754
    [6]DUAN Jianhua, YAN Wenchao, NAN Hanchen, ZHANG Qingqing, FAN Xin. Application of mine-hole joint microseismic technology in monitoring the damage depth of working face floor[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(1): 208-213,220. DOI: 10.3969/j.issn.1001-1986.2020.01.028
    [7]PANG Tao, JIANG Zaibing, LI Bingang, DU Xinfeng. Drainage technology and test of stratified pressure control with four-channels of CBM well in double coal seams[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(6): 73-77. DOI: 10.3969/j.issn.1001-1986.2019.06.012
    [8]ZHOU Yuhua, ZHOU Hengxin, CHENG Jidong. Technology and practice of remediation of the damaged shaft wall in Jining Mine No.2[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(S1): 84-88. DOI: 10.3969/j.issn.1001-1986.2018.S1.017
    [9]WANG Gongxian, ZHAO Fu. Landslide disaster and its prevention and control technology in coal mining area[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(2): 1-7. DOI: 10.3969/j.issn.1001-1986.2018.02.001
    [10]ZHAO Bing-chao, YU Xue-yi, ZHAO Ji-zhan. Visual study on prediction evaluation system of mining damage[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(4): 61-64.
  • Cited by

    Periodical cited type(11)

    1. 齐消寒,刘阳,杨雪松,朱同光,王品,侯双荣. 不同预制温度煤岩冻融损伤及渗流特性研究. 矿业科学学报. 2023(04): 474-486 .
    2. 薛守宁,何志强,李聪,余波,路雪莲,刘文玥,杨建平,魏子杰. 深部岩石原位保温取心保温材料物理力学特性研究. 煤田地质与勘探. 2023(08): 30-38 . 本站查看
    3. 徐刚,彭来栋,金洪伟. 含水煤体蠕变损伤特性及本构模型研究. 矿业研究与开发. 2023(09): 152-157 .
    4. 孔彪,钟建辉,陆伟,胡相明,辛林,张斌,张晓龙,庄则栋. 煤升温过程中声发射信号变化及产生机制研究. 煤炭科学技术. 2023(S2): 84-91 .
    5. 张慧梅,袁超,慕娜娜,张婵,路亚妮. 冻融岩石CT图像处理及细观特征分析. 西安科技大学学报. 2022(02): 219-226 .
    6. 金梦华,冯海燕,杨有贞,樊怡,马文国,赵诣深. 贺兰山岩画典型病害损伤的声发射演化特征研究. 宁夏大学学报(自然科学版). 2022(02): 177-183 .
    7. 徐遵玉. 松散煤体声发射特征与损伤本构模型. 煤炭工程. 2022(09): 112-116 .
    8. 牛睿. 岩石破坏声发射前兆研究现状及评价指标体系构建. 电声技术. 2022(12): 46-49+63 .
    9. 葛振龙,孙强,王苗苗,赵春虎. 基于RA/AF的高温后砂岩破裂特征识别研究. 煤田地质与勘探. 2021(02): 176-183 . 本站查看
    10. 段会强. 煤样分级加载蠕变破坏试验研究. 煤矿安全. 2021(07): 54-60 .
    11. 刘朝科,任建喜. 巷道底板砂岩三轴压缩蠕变试验与分数阶模型. 西安科技大学学报. 2020(06): 1003-1009 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (168) PDF downloads (22) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return