LI Xiaolong. Development and application of borehole sealing technology for water-sand inrush from Ordovician limestone aquifer in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 192-197. DOI: 10.3969/j.issn.1001-1986.2021.04.023
Citation: LI Xiaolong. Development and application of borehole sealing technology for water-sand inrush from Ordovician limestone aquifer in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 192-197. DOI: 10.3969/j.issn.1001-1986.2021.04.023

Development and application of borehole sealing technology for water-sand inrush from Ordovician limestone aquifer in coal mine

More Information
  • Received Date: December 19, 2020
  • Revised Date: May 18, 2021
  • Available Online: September 09, 2021
  • Published Date: August 24, 2021
  • The technology for surface sand filling and underground grouting is adopted to control the karst collapse column of Ordovician limestone in Sangshuping Coal Mine. However, there are serious water-sand inrushes in three conventional inspection boreholes, so it is of great difficulty to seal them. Putting wooden wedges and reverse wire packers into the boreholes all fail. In order to solve this problem, the grouting sealing technology with pressure replacement is proposed in this paper. Firstly, water larger than the casing pipe volume is injected into the borehole to ensure a clear borehole and to avoid sand filling into the casing pipe, resulting in the sealing depth not reaching the stable rock layer below the casing. After that, a lower pumping volume is adopted to repeatedly inject cement slurry larger than the casing volume into the borehole. Finally, after the cement slurry is solidified, a small diameter bit is used to drill outside the casing to check the sealing quality of the large diameter boreholes. Three conventional inspection boreholes are successfully sealed. In the engineering practice, it is found that the water-cement ratio of the cement slurry for early grouting borehole sealing should be 1︰1, and the single setting time should be 3 to 4 days. Prolonging the cement setting time can improve the quality of borehole sealing. This borehole sealing technology is applicable to underground narrow space operation, which can prevent water-sand inrushes from the orifice, ensure the sealing quality and personnel safety, and provide a technical reference for sealing similar water-sand inrushes.
  • [1]
    李晓龙, 董书宁, 刘恺德. 多层含水层分层止水技术研究进展[J]. 煤矿安全, 2020, 51(2): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202002018.htm

    LI Xiaolong, DONG Shuning, LIU Kaide. Research progress of the stratified water stop technology for multilayer aquifer[J]. Safety in Coal Mines, 2020, 51(2): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202002018.htm
    [2]
    郑纲, 徐小兵, 何渊, 等. 厚煤层放顶煤开采底板突水机理及水害探查技术[J]. 煤田地质与勘探, 2019, 47(增刊1): 7-13. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c7470810-df73-47d6-a52c-1ffc73c50d2b

    ZHENG Gang, XU Xiaobing, HE Yuan, et al. Mechanism of Ordovician limestone water inrush from the floor of caving mining face in thick coal seam and water hazard detection technology of nearly horizontal borehole[J]. Coal Geology & Exploration, 2019, 47(Sup. 1): 7-13. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c7470810-df73-47d6-a52c-1ffc73c50d2b
    [3]
    许延春, 李江华, 刘白宙. 焦作矿区煤层底板注浆加固工作面突水原因与防治[J]. 煤田地质与勘探, 2014, 42(4): 50-54. DOI: 10.3969/j.issn.1001-1986.2014.04.011

    XU Yanchun, LI Jianghua, LIU Baizhou. Reinforcement of working face by grouting in floor in Jiaozuo coal mining area[J]. Coal Geology & Exploration, 2014, 42(4): 50-54. DOI: 10.3969/j.issn.1001-1986.2014.04.011
    [4]
    DONG Shuning, ZHENG Liwei, TANG Shengli, et al. A scientometric analysis of trends in coal mine water inrush prevention and control for the period 2000-2019[J]. Mine Water and the Environment, 2020, 39: 3-12. DOI: 10.1007/s10230-020-00661-2
    [5]
    刘其声. 关于突水系数的讨论[J]. 煤田地质与勘探, 2009, 37(4): 34-37. DOI: 10.3969/j.issn.1001-1986.2009.04.009

    LIU Qisheng. A discussion on water inrush coefficient[J]. Coal Geology & Exploration, 2009, 37(4): 34-37. DOI: 10.3969/j.issn.1001-1986.2009.04.009
    [6]
    李晓龙, 穆鹏飞. 复采条件下远距离截引老空水技术[J]. 煤矿安全, 2020, 51(12): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202012015.htm

    LI Xiaolong, MU Pengfei. Technology of long-distance draining goaf water under the condition of repeated mining[J]. Safety in Coal Mines, 2020, 51(12): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202012015.htm
    [7]
    靳德武, 刘其声, 王琳, 等. 煤矿(床)水文地质学的研究现状及展望[J]. 煤田地质与勘探, 2009, 37(5): 28-31. DOI: 10.3969/j.issn.1001-1986.2009.05.007

    JIN Dewu, LIU Qisheng, WANG Lin, et al. Development and prospect of coal deposit hydrogeology[J]. Coal Geology & Exploration, 2009, 37(5): 28-31. DOI: 10.3969/j.issn.1001-1986.2009.05.007
    [8]
    杨志斌, 董书宁. 压水试验定量评价单孔注浆效果影响因素分析[J]. 煤矿安全, 2018, 49(6): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201806049.htm

    YANG Zhibin, DONG Shuning. Influence factors analysis of quantitative evaluation of single borehole grouting effect by water pressure test[J]. Safety in Coal Mines, 2018, 49(6): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201806049.htm
    [9]
    赵庆彪, 赵兵文, 付永刚, 等. 大采深矿井地面区域治理奥灰水害关键技术研究[J]. 煤炭科学技术, 2016, 44(8): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201608003.htm

    ZHAO Qingbiao, ZHAO Bingwen, FU Yonggang, et al. Research on key technology to control Ordovician limestone water disaster on surface region of deep mining depth mine[J]. Coal Science and Technology, 2016, 44(8): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201608003.htm
    [10]
    王苏健, 陈通, 李涛, 等. 承压水体上保水采煤注浆材料及技术[J]. 煤炭学报, 2017, 42(1): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701018.htm

    WANG Sujian, CHEN Tong, LI Tao, et al. Grouting material and technique in water protection mining above confined water[J]. Journal of China Coal Society, 2017, 42(1): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701018.htm
    [11]
    董书宁, 王皓, 张文忠. 华北型煤田奥灰顶部利用与改造判别准则及底板破坏深度[J]. 煤炭学报, 2019, 44(7): 2216-2226. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201907029.htm

    DONG Shuning, WANG Hao, ZHANG Wenzhong. Judgement criteria with utilization and grouting reconstruction of top Ordovician limestone and floor damage depth in North China coal field[J]. Journal of China Coal Society, 2019, 44(7): 2216-2226. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201907029.htm
    [12]
    LI Xiaolong, DONG Shuning, LIU Kaide. Prevention and control of water inrushes from subseam karstic Ordovician limestone during coal mining above ultra-thin aquitards[J]. Mine Water and the Environment, 2021. doi: https://doi.org/ 10.1007/s10230-021-00765-3
    [13]
    代革联, 薛小渊, 许珂, 等. 基于脆弱性指数法的韩城矿区11号煤层底板突水危险性评价[J]. 煤田地质与勘探, 2017, 45(4): 112-117. DOI: 10.3969/j.issn.1001-1986.2017.04.020

    DAI Gelian, XUE Xiaoyuan, XU Ke, et al. Risk assessment of water inrush of No. 11 coal seam floor in Hancheng mining area on the basis of vulnerability index method[J]. Coal Geology & Exploration, 2017, 45(4): 112-117. DOI: 10.3969/j.issn.1001-1986.2017.04.020
    [14]
    李晓龙, 张红强, 郝世俊, 等. 煤层底板奥灰水害防治定向钻孔施工关键技术[J]. 煤炭科学技术, 2019, 47(5): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201905010.htm

    LI Xiaolong, ZHANG Hongqiang, HAO Shijun, et al. Key techniques for directional drilling & construction for control of coal floor Ordovician limestone karst water disaster[J]. Coal Science and Technology, 2019, 47(5): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201905010.htm
    [15]
    李泉新. 煤层底板超前注浆加固定向钻孔钻进技术[J]. 煤炭科学技术, 2014, 42(1): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201401035.htm

    LI Quanxin. Drilling technology of directional drilled borehole for advance grouting reinforcement of seam floor[J]. Coal Science and Technology, 2014, 42(1): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201401035.htm
    [16]
    董书宁, 郭小铭, 刘其声, 等. 华北型煤田底板灰岩含水层超前区域治理模式与选择准则[J]. 煤田地质与勘探, 2020, 48(4): 1-10. DOI: 10.3969/j.issn.1001-1986.2020.04.001

    DONG Shuning, GUO Xiaoming, LIU Qisheng, et al. Model and selection criterion of zonal pre-act grouting to prevent mine water disasters of coal floor limestone aquifer in North China type coalfield[J]. Coal Geology & Exploration, 2020, 48(4): 1-10. DOI: 10.3969/j.issn.1001-1986.2020.04.001
    [17]
    李晓龙, 董书宁, 郝世俊, 等. 煤矿井下奥灰含水层大流量涌水涌沙钻孔成套封孔方法:

    CN201910917389.9[P]. 2020-01-17. LI Xiaolong, DONG Shuning, HAO Shijun, et al. A complete set of hole sealing method for large-flow water and sand inrush drilling holes in Ordovician aquifer in underground coal mine: CN201910917389.9[P]. 2020-01-17.
    [18]
    李涛, 高颖, 艾德春, 等. 基于承压水单孔放水实验的底板水害精准注浆防治[J]. 煤炭学报, 2019, 44(8): 2494-2501. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908024.htm

    LI Tao, GAO Ying, AI Dechun, et al. Floor precise grouting of prevention and control of water based on confined water single-hole drainage experiment[J]. Journal of China Coal Society, 2019, 44(8): 2494-2501. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908024.htm
  • Cited by

    Periodical cited type(2)

    1. 文国军,黄子恒,王玉丹,史垚城,姜宇昊. 基于仿真数据驱动的激光钻进气体喷嘴结构优化. 钻探工程. 2024(03): 69-75 .
    2. 刘旭堂,黄梦婕,王伟. 机械式激光窗口结构设计与防尘罩抗风载能力研究. 四川轻化工大学学报(自然科学版). 2022(01): 59-66 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (170) PDF downloads (22) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return