YANG Jian, WANG Hao, LIANG Xiangyang, HUANG Hao. Water inflow forecasting method of deep buried coal working face in northern Ordos Basin, China[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 185-191. DOI: 10.3969/j.issn.1001-1986.2021.04.022
Citation: YANG Jian, WANG Hao, LIANG Xiangyang, HUANG Hao. Water inflow forecasting method of deep buried coal working face in northern Ordos Basin, China[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 185-191. DOI: 10.3969/j.issn.1001-1986.2021.04.022

Water inflow forecasting method of deep buried coal working face in northern Ordos Basin, China

More Information
  • Received Date: December 10, 2020
  • Revised Date: April 29, 2021
  • Available Online: September 09, 2021
  • Published Date: August 24, 2021
  • The Mesozoic strata are mainly fluvial deposits in the Jurassic deep buried area of northern Ordos Basin, which are characterized by multi-cycle evolution in stages, resulting in alternate distribution of the aquifer-bearing seams on the coal seam roof. As the surface is mostly covered by Mu Us Desert, the rainfall infiltration recharge coefficient is large, and the water storage capacity of Quaternary loosen stratum is strong. The sufficient water-filling recharge source causes the water-rich aquifers on the roof of coal seams, among which the main water-filled aquifer is Qilizhen sandstone aquifer. In this study, Qilizhen sandstone aquifer is taken as the key layer, and generalized as a direct water-filled aquifer. When the water level in a confined well is lower than the roof of the aquifer, there would be no pressure flow zone in the aquifer near the well, forming a confined-phreatic well. Segmentation method is used to calculate the flow to well, including non-pressurized and confined water areas. However, in mining process of the working face, the water level in the well has been reduced to the floor of the coal seam. The traditional formula of confined- phreatic wells is based on the assumption that the diameter of wells is small(< 1 m). In mining process of the working face, with the destruction of the key water-filled aquifer(Qilizhen sandstone aquifer) by the water-conducting fracture zone of overburden, a huge drainage well is formed on the roof of the whole coal seam(102-103m). As the radius of the well increases with the goaf, the traditional formula is inapplicable. Based on the confined-phreatic well formula in Groundwater Dynamics, combined with the evolution process of the drain wells in the goaf during deep coal mining in northern Ordos Basin, a confined-phreatic well formula suitable for drain wells under mining disturbance in deep buried areas is established. Taking the first mining face of Hulusu Coal Mine as the research object, this paper uses the relevant hydrogeological parameters obtained from geological exploration and underground exposure to calculate the water inflow. The calculation results show that in the initial stage of working face mining, the actual water inflow is relatively small as the water flowing fracture zone has not communicated with Qilizhen sandstone aquifer due to the insufficient development of the zone. In the middle and later stage, the water flowing fracture zone develops to Qilizhen sandstone aquifer, and the calculated water inflow is close to the actual value, which proves that the formula for calculating the water inflow at the working face of deep-buried coal can accurately predict the water inflow in the mining process of the working face in the study area. The formula established in this study is applicable to the roof water hazard areas of Jurassic Coalfields in Western China, and provides scientific basis for water hazard prevention and control for safe mining of coal resources in deep-buried coalfields.
  • [1]
    王双明. 鄂尔多斯盆地构造演化和构造控煤作用[J]. 地质通报, 2011, 30(4): 544-552. DOI: 10.3969/j.issn.1671-2552.2011.04.011

    WANG Shuangming. Ordos Basin tectonic evolution and structural control of coal[J]. Geological Bulletin of China, 2011, 30(4): 544-552. DOI: 10.3969/j.issn.1671-2552.2011.04.011
    [2]
    张泓, 白清昭, 张笑薇, 等. 鄂尔多斯聚煤盆地的形成及构造环境[J]. 煤田地质与勘探, 1995, 23(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT503.000.htm

    ZHANG Hong, BAI Qingzhao, ZHANG Xiaowei, et al. Formation of the Ordos Basin and its coal-forming tectonic environment[J]. Coal Geology & Exploration, 1995, 23(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT503.000.htm
    [3]
    缪协兴, 王长申, 白海波. 神东矿区煤矿水害类型及水文地质特征分析[J]. 采矿与安全工程学报, 2010, 27(3): 285-291. DOI: 10.3969/j.issn.1673-3363.2010.03.001

    MIAO Xiexing, WANG Changshen, BAI Haibo. Hydrogeologic characteristics of mine water hazards in Shendong mining area[J]. Journal of Mining & Safety Engineering, 2010, 27(3): 285-291. DOI: 10.3969/j.issn.1673-3363.2010.03.001
    [4]
    顾大钊. 晋陕蒙接壤区大型煤炭基地地下水保护利用与生态修复[M]. 北京: 科学出版社, 2015.

    GU Dazhao. Groundwater protection, utilization and ecological restoration of large coal base in the contiguous area of Shanxi, Shaanxi and Inner Mongolia[M]. Beijing: Science Press, 2015.
    [5]
    杨建, 梁向阳, 丁湘. 蒙陕接壤区深埋煤层开发过程中矿井涌水量变化特征[J]. 煤田地质与勘探, 2017, 45(4): 97-101. DOI: 10.3969/j.issn.1001-1986.2017.04.017

    YANG Jian, LIANG Xiangyang, DING Xiang. Variation characteristics of mine inflow during mining of deep buried coal seams in Shaanxi and Inner Mongolia contiguous area[J]. Coal Geology & Exploration, 2017, 45(4): 97-101. DOI: 10.3969/j.issn.1001-1986.2017.04.017
    [6]
    李东, 刘生优, 张光德, 等. 鄂尔多斯盆地北部典型顶板水害特征及其防治技术[J]. 煤炭学报, 2017, 42(12): 3249-3254. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201712023.htm

    LI Dong, LIU Shengyou, ZHANG Guangde, et al. Typical roof water disasters and its prevention & control technology in the north of Ordos Basin[J]. Journal of China Coal Society, 2017, 42(12): 3249-3254. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201712023.htm
    [7]
    刘洋, 张幼振. 浅埋煤层工作面涌水量预测方法研究[J]. 采矿与安全工程学报, 2010, 27(1): 116-120. DOI: 10.3969/j.issn.1673-3363.2010.01.022

    LIU Yang, ZHANG Youzhen. Forecast method for water inflow from working face in shallowly buried coal seam[J]. Journal of Mining & Safety Engineering, 2010, 27(1): 116-120. DOI: 10.3969/j.issn.1673-3363.2010.01.022
    [8]
    国家安全生产监督管理总局. 煤矿安全规程[M]. 北京: 煤炭工业出版社, 2011.

    State Administration of Work Safety. Safety regulations in coal mine[M]. Beijing: China Coal Industry Publishing House, 2011.
    [9]
    虎维岳, 闫丽. 对矿井涌水量预测问题的分析与思考[J]. 煤炭科学技术, 2016, 44(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601003.htm

    HU Weiyue, YAN Li. Analysis and consideration on prediction problems of mine water inflow volume[J]. Coal Science and Technology, 2016, 44(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601003.htm
    [10]
    周振方, 靳德武, 虎维岳, 等. 煤矿工作面推采采空区涌水双指数动态衰减动力学研究[J]. 煤炭学报, 2018, 43(9): 2587-2594. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809027.htm

    ZHOU Zhenfang, JIN Dewu, HU Weiyue, et al. Double-exponential variation law of water-inflow from roof aquifer in goaf of working face with mining process[J]. Journal of China Coal Society, 2018, 43(9): 2587-2594. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809027.htm
    [11]
    刘洋, 王振荣, 牛建立. 工作面涌水量预测方法的确定[J]. 矿业安全与环保, 2010, 37(5): 29-30. DOI: 10.3969/j.issn.1008-4495.2010.05.010

    LIU Yang, WANG Zhenrong, NIU Jianli. Determination of prediction method of water inflow in working face[J]. Mining Safety & Environmental Protection, 2010, 37(5): 29-30. DOI: 10.3969/j.issn.1008-4495.2010.05.010
    [12]
    李永涛, 杨建. 基于顶板水预疏放的首采工作面涌水规律[J]. 煤田地质与勘探, 2019, 47(4): 104-109. DOI: 10.3969/j.issn.1001-1986.2019.04.016

    LI Yongtao, YANG Jian. Water inflow law of the first working face based on water pre-draining from roof[J]. Coal Geology & Exploration, 2019, 47(4): 104-109. DOI: 10.3969/j.issn.1001-1986.2019.04.016
    [13]
    施龙青, 王雅茹, 邱梅, 等. 时间序列模型在工作面涌水量预测中的应用[J]. 煤田地质与勘探, 2020, 48(3): 108-115. DOI: 10.3969/j.issn.1001-1986.2020.03.016

    SHI Longqing, WANG Yaru, QIU Mei, et al. Application of time series model in water inflow prediction of working face[J]. Coal Geology & Exploration, 2020, 48(3): 108-115. DOI: 10.3969/j.issn.1001-1986.2020.03.016
    [14]
    梁积伟. 鄂尔多斯盆地侏罗系沉积体系和层序地层学研究[D]. 西安: 西北大学, 2007.

    LIANG Jiwei. Research on sedimentary system and squence stratigraphy of the Jurassic in Ordos Basin[D]. Xi'an: Northwest University, 2007.
    [15]
    赵俊峰. 鄂尔多斯盆地直罗-安定期原盆恢复[D]. 西安: 西北大学, 2007.

    ZHAO Junfeng. Restoration of the primary Ordos Basin in Zhiluo-Anding Period[D]. Xi'an: Northwest University, 2007.
    [16]
    李向平, 陈刚, 章辉若, 等. 鄂尔多斯盆地中生代构造事件及其沉积响应特点[J]. 西安石油大学学报(自然科学版), 2006, 21(3): 1-4. DOI: 10.3969/j.issn.1673-064X.2006.03.001

    LI Xiangping, CHEN Gang, ZHANG Huiruo, et al. Mesozoic tectonic events in Ordos Basin and their sedimentary responses[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2006, 21(3): 1-4. DOI: 10.3969/j.issn.1673-064X.2006.03.001
    [17]
    梁向阳, 杨建, 曹志国. 呼吉尔特矿区矿井涌水特征及其沉积控制[J]. 煤田地质与勘探, 2020, 48(1): 138-144. DOI: 10.3969/j.issn.1001-1986.2020.01.018

    LIANG Xiangyang, YANG Jian, CAO Zhiguo. Characteristics and sedimental control of mine water outflow in Hujirt mining area[J]. Coal Geology & Exploration, 2020, 48(1): 138-144. DOI: 10.3969/j.issn.1001-1986.2020.01.018
    [18]
    杨建, 刘洋, 刘基. 基于沉积控水的鄂尔多斯盆地侏罗纪煤田防治水关键层研究[J]. 煤矿安全, 2018, 49(4): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201804009.htm

    YANG Jian, LIU Yang, LIU Ji. Study on key layer of water prevention and control in Ordos Basin Jurassic Coalfield based on sedimentary water control theory[J]. Safety in Coal Mines, 2018, 49(4): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201804009.htm
    [19]
    武强, 徐华, 赵颖旺, 等. 基于"三图法"煤层顶板突水动态可视化预测[J]. 煤炭学报, 2016, 41(12): 2968-2974. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201612006.htm

    WU Qiang, XU Hua, ZHAO Yingwang, et al. Dynamic visualization and prediction for water bursting on coal roof based on"three maps method"[J]. Journal of China Coal Society, 2016, 41(12): 2968-2974. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201612006.htm
    [20]
    侯光才. 鄂尔多斯白垩系盆地地下水系统及其水循环模式研究[D]. 长春: 吉林大学, 2008.

    HOU Guangcai. Groundwater system and water circulation pattern in Ordos Cretaceous groundwater basin[D]. Changchun: Jilin University, 2008.
    [21]
    唐克旺, 王浩, 刘畅. 陕北红碱淖湖泊变化和生态需水初步研究[J]. 自然资源学报, 2003, 18(3): 304-309. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX200303006.htm

    TANG Kewang, WANG Hao, LIU Chang. Preliminary study of Hongjiannao Lake's variation and ecological water demand[J]. Journal of Natural Resources, 2003, 18(3): 304-309. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX200303006.htm
    [22]
    杨建, 刘基, 靳德武, 等. 有机-无机联合矿井突水水源判别方法[J]. 煤炭学报, 2018, 43(10): 2886-2894. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201810028.htm

    YANG Jian, LIU Ji, JIN Dewu, et al. Method of determining mine water inrush source based on combination of organic-inorganic water chemistry[J]. Journal of China Coal Society, 2018, 43(10): 2886-2894. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201810028.htm
    [23]
    贺勤, 刘正奇. 毛乌素沙漠-世界沙漠暴雨中心[J]. 内蒙古气象, 1996(3): 5-15. https://www.cnki.com.cn/Article/CJFDTOTAL-NMQX603.001.htm

    HE Qin, LIU Zhengqi. Mu Us Desert: The world desert rainstorm center[J]. Meteorology Journal of Inner Mongolia, 1996(3): 5-15. https://www.cnki.com.cn/Article/CJFDTOTAL-NMQX603.001.htm
    [24]
    薛禹群, 吴吉春. 地下水动力学[M]. 北京: 地质出版社, 2010.

    XUE Yuqun, WU Jichun. Groundwater dynamics[M]. Beijing: Geological Publishing House, 2010.
  • Related Articles

    [1]ZHANG Yuanyuan, ZHANG Pengfei, NIE Fengjun, YAN Pengbing, ZHANG Zhibo, YAN Zhaobin, ZHANG Xin. Distribution characteristics of heavy minerals in the sandstone of Zhiluo Formation of northern Ordos Basin and its implication[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 142-152. DOI: 10.3969/j.issn.1001-1986.2021.04.017
    [2]YANG Yi, LYU Dawei, ZHANG Jianqiang, WU Dun. Causes of anomaly of rare earth elements of seam 2 of Yan'an Formation in the northern margin of Ordos basin and its geological significance[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 78-84. DOI: 10.3969/j.issn.1001-1986.2020.02.013
    [3]YU Reng'an, SIMA Xianzhang, LI Jianguo, WANG Shanbo, YANG Jun, LIU Xiaoxue. Response characteristics of lithologic logging of Zhiluo Formation in Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(6): 33-39,51. DOI: 10.3969/j.issn.1001-1986.2018.06.005
    [4]ZHU Qiang, YU Reng'an, LI Jianguo, SIMA Xianzhang, SI Qinghong, LI Guangyao, WEN Sibo, LIU Xiaoxue, WANG Shanbo. Control of reducing medium on uranium deposit of sandstone in Tarangaole area, northeastern Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(6): 11-18. DOI: 10.3969/j.issn.1001-1986.2018.06.002
    [5]LI Zhixue, SHAO Longyi, LI Mingpei, CHEN Fei. Analysis of shale gas resource exploration potential of Yan'an Formation in northern Huangling mining area of Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(4): 31-35. DOI: 10.3969/j.issn.1001-1986.2014.04.007
    [6]LIU Zhi-wu, HAN Dai-cheng, ZHOU Li-fa. Natural gas prospecting foreground of the Palaeozoic in southeastern Ordos Basin[J]. COAL GEOLOGY & EXPLORATION, 2008, 38(5): 24-30.
    [7]LI Xiao-yan, WANG Jie-ling, ZHAO Ping. Classification and evaluation of the high quality coal in Ordos Basin[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(4): 1-4.
    [8]LIANG Ji-wei, LI Wen-hou, ZHANG Feng, LIN Feng, GUO Yan-qin, CHEN Quan-hong, WANG Ruo-gu. Coal-accumulation of lower member of Shanxi Formation in northeastern Ordos Basin[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(1): 7-11.
    [9]Li Hengtang, Lu Zhifa. TREND SURFACE ANALYSIS OF THE CONTROL OF PALEOTECTONICS TO COAL ACCUMULATION OF YANAN FORMATION IN ORDOS BASIN[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(5): 5-9.
    [10]GAO Xuanzheng. LITHOFACIES PALAEOGEOGRAPHY OF LOWER JURASSIC IN ORDOS BASIN[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(3): 1-5.
  • Cited by

    Periodical cited type(17)

    1. 王淑璇,王强民,曹煜,王浩. 榆横矿区典型矿井含水层水力联系辨识. 能源与环保. 2025(02): 101-105+111 .
    2. 马国逢,刘洋,杨建,王强民. 蒙陕深埋煤层首采工作面顶板富水性和涌水量差异研究. 煤炭工程. 2024(02): 87-91 .
    3. 丁莹莹,尹尚先,连会青,卜昌森,刘伟,夏向学,周旺. 基于CEEMDAN和改进的混合时间序列模型工作面涌水量预测研究. 中国安全生产科学技术. 2024(03): 110-117 .
    4. 任海帆. 鄂尔多斯盆地煤层气开发井壁稳定性技术研究. 中国高新科技. 2024(07): 123-125 .
    5. 邓启锐,高建峰,刘飞,徐士哲,许珂,王杰,南忠辉. 基于不完整井非稳定运动的立井井筒涌水量预测研究. 煤炭工程. 2024(08): 172-176 .
    6. 付德渊,樊江伟,乌阳嘎,黄海鱼,白志君,李哲. 基于AHP的东胜煤田煤层顶板充水强度分区评价. 陕西煤炭. 2024(09): 58-63+99 .
    7. 周振方,董书宁,董阳,罗生虎,薛建坤,王治宙,王淑璇,尚宏波,王甜甜,王昱同,王同. 蒙陕接壤区典型煤层开采顶板周期性变形破坏及涌水响应特征. 煤田地质与勘探. 2024(08): 101-110 . 本站查看
    8. 贾继平,李赵岩,李涛,田超超. 黄陵一号煤矿814工作面采前防治水安全评价. 陕西煤炭. 2024(10): 91-95 .
    9. 陈云民,李媛,苏士杰,吴永辉,周新河. 基于小波变换的煤矿区地下水位动态变化特征分析. 煤炭工程. 2024(S1): 153-162 .
    10. 杨建,王皓,王强民,张溪彧,王甜甜. 蒙陕接壤区矿井水中典型污染组分特征及来源. 煤炭学报. 2023(04): 1687-1696 .
    11. 王林威,靖娟,尚文绣. 矿井大量涌水地区多水源联合配置. 水资源与水工程学报. 2023(03): 37-45+54 .
    12. 刘慧,刘桂芹,宁殿艳,樊娟,陈卫明. 基于VMD-DBN的矿井涌水量预测方法. 煤田地质与勘探. 2023(06): 13-21 . 本站查看
    13. 孙刚友,胡清珍,康钦容,夏缘帝,袁威,张卫中. 基于大井法和地下水模型系统数值模拟方法的某矿坑涌水量预测对比分析. 科学技术与工程. 2023(21): 9024-9031 .
    14. 王皓,周振方,杨建,赵春虎,曹煜,冯龙飞,尚宏波,王甜甜,王昱同,薛建坤. 蒙陕接壤区典型煤层开采地下水系统扰动的定量表征. 煤炭科学技术. 2023(07): 83-93 .
    15. 康占忠,刘洋. 榆神矿区水文地球化学特征精细分层研究. 煤炭技术. 2022(08): 72-75 .
    16. 刘洋,杨建,周建军. 蒙陕深埋矿区工作面涌水量全生命周期演化规律. 煤田地质与勘探. 2022(12): 152-158 . 本站查看
    17. 周新河,翁明月,苏士杰,李广疆. 近距离煤层顶板水害立体防控技术研究——以蒙陕深部矿井为例. 煤炭科学技术. 2021(12): 165-172 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (187) PDF downloads (26) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return