LI Panfeng. Hazard source effect and location experiment of concealed water disaster in coal seam floor[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 178-184. DOI: 10.3969/j.issn.1001-1986.2021.04.021
Citation: LI Panfeng. Hazard source effect and location experiment of concealed water disaster in coal seam floor[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 178-184. DOI: 10.3969/j.issn.1001-1986.2021.04.021

Hazard source effect and location experiment of concealed water disaster in coal seam floor

More Information
  • Received Date: February 23, 2021
  • Revised Date: May 24, 2021
  • Available Online: September 09, 2021
  • Published Date: August 24, 2021
  • The hydro-hazards, water-conductive collapse columns and water inrush from faults, hidden in coal seam floor have caused many coal mines flooded in North China, bringing huge economic losses and safety threats to enterprises. In order to study the hydrogeological effects of the hydro-hazards and hazards locating technology, the sand trough simulation experiments in which the hazard sources are located inside the measurement area are conducted based on the hydrogeological conditions of Carboniferous-Permian coalfields in North China. The experiments show that, when the hydraulic field becomes stable, the effects of collapse columns are manifested by the concentric circles of the water head, temperature and solute concentration contours, with the hazards located in the maximum contour circles. Water head contours are denser in the downstream of the hazard source than those in the upstream, while the contours of temperature and solute concentration are denser in the upstream than those in the downstream. The effects caused by hidden faults present parallel contours, and the hazards are between the two maximum parallel lines. Similarly, the density of water head contours increases in the downstream region of the hazard source, while the density decreases in the upstream region. The temperature and concentration contours are reversed.. The areas constrained by the maximum contours of water temperature and solute concentration for the two hazard sources are much bigger than those constrained by water head contours, and the real size of the hazard sources. Both the sources lay closely to the zone with denser contours. The graphic method and flow-field fitting method to search hazards are proposed in this paper according to the experiments, both of which have an error of no more than 6 m. The technology for hydrogeological effect detection is suitable for detecting water head, temperature and solute concentration in the hidden water-conductive collapse columns or faults in the thin limestone aquifer of Taiyuan Formation presented by Ordovician karst water in Carboniferous-Permian Coalfields in North China, providing a basis for locating and controlling groundwater hazards.
  • [1]
    李白英. 预防矿井底板突水的"下三带"理论及其发展与应用[J]. 山东矿业学院学报(自然科学版), 1999, 18(4): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY199904004.htm

    LI Baiying. Development and application of "Down Three Zones" in the prediction of the water inrush from coalbed floor aquifer theory[J]. Journal of Shandong Institute of Mining and Technology(Natural Science), 1999, 18(4): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY199904004.htm
    [2]
    王作宇, 刘鸿泉. 承压水上采煤[M]. 北京: 煤炭工业出版社, 1992.

    WANG Zuoyu, LIU Hongquan. Coal mining above confined aquifer[M]. Beijing: China Coal Industry Publishing House, 1992.
    [3]
    钱鸣高, 缪协兴, 许家林. 岩层控制的关键层理论[M]. 徐州: 中国矿业大学出版社, 2003.

    QIAN Minggao, MIAO Xiexing, XU Jialin. The key layer theory of rock formation control[M]. Xuzhou: China University of Mining and Technology Press, 2003.
    [4]
    施龙青, 韩进. 开采煤层底板"四带"划分理论与实践[J]. 中国矿业大学学报, 2005, 34(1): 16-23. DOI: 10.3321/j.issn:1000-1964.2005.01.004

    SHI Longqing, HAN Jin. Theory and practice of dividing coal mining area floor into four-zone[J]. Journal of China University of Mining and Technology, 2005, 34(1): 16-23. DOI: 10.3321/j.issn:1000-1964.2005.01.004
    [5]
    王经明. 承压水沿煤层底板递进导升突水机理的模拟与观测[J]. 岩土工程学报, 1999, 21(5): 546-549. DOI: 10.3321/j.issn:1000-4548.1999.05.004

    WANG Jingming. In-situ measurement and physical analogue on water inrush from coal floor induced by progressive intrusion of artesian water into protective aquiclude[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 546-549. DOI: 10.3321/j.issn:1000-4548.1999.05.004
    [6]
    黄浩, 王经明. 煤层底板隐伏断层突水的物理实验研究[J]. 华北科技学院学报, 2015, 12(1): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HBKJ201501005.htm

    HUANG Hao, WANG Jingming. Research on water inrush from the blind fault of coal floor by physical experiment[J]. Journal of North China Institute of Science and Technology, 2015, 12(1): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HBKJ201501005.htm
    [7]
    王进尚, 姚多喜, 黄浩. 煤矿隐伏断层递进导升突水的临界判据及物理模拟研究[J]. 煤炭学报, 2018, 43(7): 2014-2020. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807026.htm

    WANG Jinshang, YAO Duoxi, HUANG Hao. Critical criterion and physical simulation research on progressive ascending water inrush in hidden faults of coal mines[J]. Journal of China Coal Society, 2018, 43(7): 2014-2020. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201807026.htm
    [8]
    何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803-2813. DOI: 10.3321/j.issn:1000-6915.2005.16.001

    HE Manchao, XIE Heping, PENG Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813. DOI: 10.3321/j.issn:1000-6915.2005.16.001
    [9]
    尹尚先, 武强, 王尚旭. 华北岩溶陷落柱突水的水文地质及力学基础[J]. 煤炭学报, 2004, 29(2): 182-185. DOI: 10.3321/j.issn:0253-9993.2004.02.013

    YIN Shangxian, WU Qiang, WANG Shangxu. Hydrogeological and mechanical basics of water inrush from karstic collapse columns in northern China[J]. Journal of China Coal Society, 2004, 29(2): 182-185. DOI: 10.3321/j.issn:0253-9993.2004.02.013
    [10]
    王经明, 董书宁, 吕玲, 等. 采矿对断层的扰动及水文地质效应[J]. 煤炭学报, 1997, 22(4): 361-365. DOI: 10.3321/j.issn:0253-9993.1997.04.005

    WANG Jingming, DONG Shuning, LYU Ling, et al. Mining disturbance on faults in panel and the hydrogeological effect[J]. Journal of China Coal Society, 1997, 22(4): 361-365. DOI: 10.3321/j.issn:0253-9993.1997.04.005
    [11]
    李浩, 白海波, 武建军, 等. D-P随机损伤本构模型及其在预防陷落柱突水中的应用[J]. 岩土力学, 2018, 39(12): 4577-4587. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812033.htm

    LI Hao, BAI Haibo, WU Jianjun, et al. D-P stochastic damage constitutive model and its application in preventing water inrush of karst collapsed column[J]. Rock and Soil Mechanics, 2018, 39(12): 4577-4587. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812033.htm
    [12]
    李连崇, 唐春安, 左宇军, 等. 煤层底板下隐伏陷落柱的滞后突水机理[J]. 煤炭学报, 2009, 34(9): 1212-1216. DOI: 10.3321/j.issn:0253-9993.2009.09.013

    LI Lianchong, TANG Chun'an, ZUO Yujun, et al. Mechanism of hysteretic groundwater inrush from coal seam floor with karstic collapse columns[J]. Journal of China Coal Society, 2009, 34(9): 1212-1216. DOI: 10.3321/j.issn:0253-9993.2009.09.013
    [13]
    谢志钢, 刘启蒙, 柴辉婵, 等. 煤层底板隐伏陷落柱突水预测及采前注浆加固评价[J]. 中国安全生产科学技术, 2019, 15(5): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201905023.htm

    XIE Zhigang, LIU Qimeng, CHAI Huichan, et al. Prediction of water inrush from hidden collapse column at coal seam floor and evaluation of grouting reinforcement before mining[J]. Journal of Safety Science and Technology, 2019, 15(5): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201905023.htm
    [14]
    贾贵廷, 胡宽瑢. 华北型煤田陷落柱的形成及分布规律[J]. 中国岩溶, 1989, 8(4): 261-267. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198904001.htm

    JIA Guiting, HU Kuanrong. The formation and distribution of collapse columns in North-China-type coal fields[J]. Carsologica Sinica, 1989, 8(4): 261-267. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198904001.htm
    [15]
    司淑平, 马建民, 胡得西. 煤系地层陷落柱成因机理及分布规律研究[J]. 断块油气田, 2001, 8(2): 15-18. DOI: 10.3969/j.issn.1005-8907.2001.02.005

    SI Shuping, MA Jianmin, HU Dexi. The origin mechanism and distribution regularity of karst collapse in coal measure strata[J]. Pault-Block Oil & Gas Field, 2001, 8(2): 15-18. DOI: 10.3969/j.issn.1005-8907.2001.02.005
    [16]
    WANG Jingming, LIU Xianwei, LIU Wensheng, et al. The inner circulation mechanism in sinking column formation in North China coal field: A case study in Fengfeng mining areas[J]. Journal of Coal Science & Engineering, 2007, 13(1): 32-36. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-coal-english_thesis/0201217017351.html
    [17]
    董海洲, 张小燕. 堤坝渗漏圆柱状热源模型及试验研究[J]. 岩石力学与工程学报, 2011, 30(增刊2): 3665-3670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2040.htm

    DONG Haizhou, ZHANG Xiaoyan. Seepage cylindrical heat source model of dam and its experimental study[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Sup. 2): 3665-3670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2040.htm
    [18]
    何满潮, 张毅, 乾增珍, 等. 深部矿井热害治理地层储冷数值模拟研究[J]. 湖南科技大学学报(自然科学版), 2006, 21(2): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200602003.htm

    HE Manchao, ZHANG Yi, QIAN Zengzhen, et al. Numerical simulation study on utilizing aquifers to store cool energy in fathing deep mine heat-harm[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2006, 21(2): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200602003.htm
  • Cited by

    Periodical cited type(4)

    1. 单蕊,张广忠,聂爱兰. 基于OVT域的五维高密度地震数据陷落柱识别应用. 能源与环保. 2024(05): 91-96 .
    2. 张平松,欧元超. 煤层采动底板突水物理模拟试验研究进展与展望. 煤田地质与勘探. 2024(06): 44-56 . 本站查看
    3. 尚慧. 晋城西北矿区底板隔水层采动影响模拟研究. 重庆科技学院学报(自然科学版). 2023(04): 13-20 .
    4. 绪瑞华,张冲冲. 工作面隐伏构造槽波地震探测技术分析. 能源技术与管理. 2022(02): 177-179 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (153) PDF downloads (25) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return