Citation: | ZHANG Huaiwen, YAO Yiqing, XIE Changwen. Effects of different combined pretreatments on biogenic methane production by anaerobic digestion of lignite[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 162-169. DOI: 10.3969/j.issn.1001-1986.2021.04.019 |
[1] |
WANG Aikuan, SHAO Pei, LAN Fengjuan, et al. Organic chemicals in coal available to microbes to produce biogenic coalbed methane: A review of current knowledge[J]. Journal of Natural Gas Science and Engineering, 2018, 60: 40-48. DOI: 10.1016/j.jngse.2018.09.025
|
[2] |
MAYUMI D, MOCHIMARU H, TAMAKI H, et al. Methane production from coal by a single methanogen[J]. Science, 2016, 354(6309): 222-225. DOI: 10.1126/science.aaf8821
|
[3] |
ROBBINS S J, EVANS P N, ESTERLE J S, et al. The effect of coal rank on biogenic methane potential and microbial composition[J]. International Journal of Coal Geology, 2016, 154-155: 205-212. DOI: 10.1016/j.coal.2016.01.001
|
[4] |
王姗姗, 韩娅新, 何环, 等. 煤层水中一株产甲烷菌的分离与系统发育分析[J]. 应用与环境生物学报, 2014, 20(1): 123-127. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201401021.htm
WANG Shanshan, HAN Yaxin, HE Huan, et al. Isolation and phylogenic analysis of a methanogen from coal bed water[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(1): 123-127. https://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201401021.htm
|
[5] |
PARK S Y, LIANG Yanna. Biogenic methane production from coal: A review on recent research and development on microbially enhanced coalbed methane(MECBM)[J]. Fuel, 2016, 166: 258-267. DOI: 10.1016/j.fuel.2015.10.121
|
[6] |
夏大平, 黄松, 张怀文. 褐煤发酵制生物氢过程中关键液相产物的变化规律[J]. 天然气工业, 2019, 39(8): 146-153. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201908025.htm
XIA Daping, HUANG Song, ZHANG Huaiwen. Transformation analysis of key liquid phase products during lignite fermentation to produce biological hydrogen[J]. Nature Gas Industry, 2019, 39(8): 146-153. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201908025.htm
|
[7] |
HARRIS S H, SMITH R L, BARKER C E. Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals[J]. International Journal of Coal Geology, 2008, 76: 46-51. DOI: 10.1016/j.coal.2008.05.019
|
[8] |
HUANG Zaixing, URYNOWICZ M A, COLBERG P J S. Stimulation of biogenic methane generation in coal samples following chemical treatment with potassium permanganate[J]. Fuel, 2013, 111: 813-819. DOI: 10.1016/j.fuel.2013.03.079
|
[9] |
HUANG Zaixing, URYNOWICZ M A, COLBERG P J S. Bioassay of chemically treated subbituminous coal derivatives using Pseudomonas putida F1[J]. International Journal of Coal Geology, 2013, 115: 97-105. DOI: 10.1016/j.coal.2013.01.012
|
[10] |
GUO Hongyu, LIU Xile, BAI Yang, et al. Impact of coal particle size on biogenic methane metabolism and its significance[J]. Journal of Computational and Theoretical Nanoscience, 2016, 13(2): 1297-1301. DOI: 10.1166/jctn.2016.5046
|
[11] |
DONG Pengwei, YUE Junrong, GAO Shiqiu, et al. Influence of thermal pretreatment on pyrolysis of lignite[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 897-905. DOI: 10.1016/S1872-5813(12)60033-4
|
[12] |
席国赟, 张璐鑫, 王晓昌. 木质纤维素厌氧消化产甲烷的化学预处理方法研究进展[J]. 纤维素科学与技术, 2017, 25(2): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-XWSK201702011.htm
XI Guoyun, ZHANG Luxin, WANG Xiaochang. Recent progress in study on chemical technology for pretreating lignocellulose to methane production in anaerobic digestion[J]. Journal of Cellulose Science and Technology, 2017, 25(2): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-XWSK201702011.htm
|
[13] |
ZHANG Han, NING Zhifang, KHALID H, et al. Enhancement of methane production from cotton stalk using different pretreatment techniques[J]. Scientific Reports, 2018, 8: 3463-3471. DOI: 10.1038/s41598-018-21413-x
|
[14] |
CHEN Tianyuan, RODRIGUES S, GOLDING S D, et al. Improving coal bioavailability for biogenic methane production via hydrogen peroxide oxidation[J]. International Journal of Coal Geology, 2018, 195: 402-414. DOI: 10.1016/j.coal.2018.06.011
|
[15] |
HAQ S R, TAMAMURA S, IGARASHI T, et al. Characterization of organic substances in lignite before and after hydrogen peroxide treatment: Implications for microbially enhanced coalbed methane[J]. International Journal of Coal Geology, 2018, 185: 1-11. DOI: 10.1016/j.coal.2017.11.009
|
[16] |
CAI Jingling, WANG Guangce. Comparison of different pre-treatment methods for enriching hydrogen-producing bacteria from intertidal sludge[J]. International Journal of Green Energy, 2016, 13(3): 292-297. DOI: 10.1080/15435075.2014.893436
|
[17] |
HOSSEINI K E, DAHADHA S, BAZYAR LAKEH A A, et al. Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production: A review[J]. Journal of Environmental Management, 2019, 233: 774-784. http://www.ncbi.nlm.nih.gov/pubmed/30314871
|
[18] |
张怀文, 黄松, 闫夏彤, 等. 白腐真菌预处理对煤厌氧发酵产甲烷的影响[J]. 煤田地质与勘探, 2020, 48(2): 120-125. DOI: 10.3969/j.issn.1001-1986.2020.02.019
ZHANG Huaiwen, HUANG Song, YAN Xiatong, et al. Effect of white rot fungi pretreatment on methane production from anaerobic fermentation of coal[J]. Coal Geology & Exploration, 2020, 48(2): 120-125. DOI: 10.3969/j.issn.1001-1986.2020.02.019
|
[19] |
赵星程. 厌氧污泥中微生物降解褐煤产甲烷的初步探究[D]. 天津: 天津理工大学, 2019.
ZHAO Xingcheng. Preliminary study on microbial degradation of methane from lignite in anaerobic sludge[D]. Tianjin: Tianjin University of Technology, 2019.
|
[20] |
夏大平, 苏现波, 吴昱, 等. 不同预处理方式和模拟产气实验对煤结构的影响[J]. 煤炭学报, 2013, 38(1): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201301020.htm
XIA Daping, SU Xianbo, WU Yu, et al. Effect of experimental of different pretreatment methods and simulating biogenic methane production on coal structure[J]. Journal of China Coal Society, 2013, 38(1): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201301020.htm
|
[21] |
夏大平, 陈曦, 王闯, 等. 褐煤酸碱预处理-微生物气化联产H2-CH4的实验研究[J]. 煤炭学报, 2017, 12(42): 3221-3228.
XIA Daping, CHEN Xi, WANG Chuang, et al. Experimental study on the production of H2-CH4 from lignite jointly with acid-alkali pretreatment-microbial gasification[J]. Journal of China Coal Society, 12(42): 3221-3228.
|
[22] |
YADAV M, VIVEKANAND V. Combined fungal and bacterial pretreatment of wheat and pearl millet straw for biogas production: A study from batch to continuous stirred tank reactors[J]. Bioresource Technology, 2020, 321: 124523. http://www.sciencedirect.com/science/article/pii/S0960852420317971
|
[23] |
FARHAT A, ASSEs N, ENNOURI H, et al. Combined effects of thermal pretreatment and increasing organic loading by co-substrate addition for enhancing municipal sewage sludge anaerobic digestion and energy production[J]. Process Safety and Environmental Protection, 2018, 119: 14-22. http://www.sciencedirect.com/science/article/pii/S0957582018305226
|
[24] |
HAFID H S, RAHMAN N A, SHAH U K M, et al. Enhanced fermentable sugar production from kitchen waste using various pretreatments[J]. Journal of Environmental Management, 2015, 156: 290-298. http://www.cabdirect.org/abstracts/20153202453.html
|
[25] |
SU Xianbo, HONG Jiangtao, XIA Daping, et al. The variety and transition of key intermediate liquid products during the process of coal-to-biohydrogen fermentation[J]. International Journal of Energy Research, 2019, 43(1): 568-579. DOI: 10.1002/er.4303
|
[26] |
GUO Hongyu, GAO Zhixiang, XIA Daping, et al. Simulation study on the biological methanation of CO2 sequestered in coal seams[J]. Journal of CO2 Utilization, 2019, 34: 171-179.
|
[27] |
柳珊, 吴树彪, 张万钦, 等. 白腐真菌预处理对玉米秸秆厌氧发酵产甲烷影响实验[J]. 农业机械学报, 2013, 44(增刊2): 124-129. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX2013S2025.htm
LIU Shan, WU Shubiao, ZHANG Wanqin, et al. Effect of white-rot fungi pretreatment on methane production from anaerobic digestion of corn stover[J]. Transactions on the Chinese Society for Agricultural Machinery, 2013, 44(Sup. 2): 124-129. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX2013S2025.htm
|
[28] |
张双全. 煤化学(第4版)[M]. 徐州: 中国矿业大学出版社, 2015.
ZHANG Shuangquan. Coal chemistry(4rd Edition)[M]. Xuzhou: China University of Mining and Technology Press, 2015.
|
[29] |
拜阳. 煤层产甲烷菌群的迁移特征研究[D]. 焦作: 河南理工大学, 2017.
BAI Yang. Migration characteristics of methanogenic consortia in coal seam[D]. Jiaozuo: Henan Polytechnic University, 2017.
|
[30] |
徐一雯, 蒋建国, 刘诺, 等. 预处理对厨余垃圾等有机废弃物联合厌氧发酵的影响[J]. 清华大学学报(自然科学版), 2019, 59(7): 558-566. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201907009.htm
XU Yiwen, JIANG Jianguo, LIU Nuo, et al. Effects of pretreatment on anaerobic co-digestion of kitchen waste and other organic wastes[J]. J Tsinghua University(Science & Technology), 2019, 59(7): 558-566. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201907009.htm
|
[31] |
秦智, 任南琪, 李建政. 丁酸型发酵产氢的运行稳定性[J]. 太阳能学报, 2004, 25(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200401009.htm
QIN Zhi, REN Nanqi, LI Jianzheng. Operational stability of butyric acid type fermentation in biological hydrogen production system[J]. Acta Energiae Solaris Sinica, 2004, 25(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200401009.htm
|
[32] |
陈雪, 李秀金, 张文海, 等. 酸化相发酵类型对甲烷相产甲烷性能的影响[J]. 环境工程学报, 2017, 11(11): 6007-6013. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201711032.htm
CHEN Xue, LI Xiujin, ZHANG Wenhai, et al. Effects of fermentation type of acidogenic phase on biomethane yield of methanogenic phase[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 6007-6013. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201711032.htm
|