ZHANG Jianguo, HAN Sheng, ZHANG Cong, CHEN Yanjun. Coal body structure identification by logging based on coal accumulation environment zoning and its application in Mabidong Block, Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 114-122. DOI: 10.3969/j.issn.1001-1986.2021.04.014
Citation: ZHANG Jianguo, HAN Sheng, ZHANG Cong, CHEN Yanjun. Coal body structure identification by logging based on coal accumulation environment zoning and its application in Mabidong Block, Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 114-122. DOI: 10.3969/j.issn.1001-1986.2021.04.014

Coal body structure identification by logging based on coal accumulation environment zoning and its application in Mabidong Block, Qinshui Basin

More Information
  • Received Date: November 18, 2020
  • Revised Date: February 28, 2021
  • Available Online: September 09, 2021
  • Published Date: August 24, 2021
  • Identification of coal body structure by logging curves is an efficient and economical geophysical method. However, due to the influence of sedimentary environment and coal reservoir property, logging curves have multiple solutions, leading to an unclear logging response of coal body structure. And the identification rules acquired in one place cannot be applied in another place. Therefore, before starting logging discrimination, it is necessary to control the factors influencing well logging apart from coal structure. This essay takes an example from No.3 coal seam in Mabidong Block, Qinshui Basin. Firstly, coal cores are relocated to their logging depth by the positive correlation between ash content and gamma logging curves. And then, the coal-accumulating environment is divided by the ratio of vitrinite content to inertinite content. After that, the logging curves of similar environment are selected preferably. The result shows that resistivity logging serial curves can indicate the changes in coal body structure clearly, while acoustic wave logging cannot because of its shallow penetration depth. Finally, the Random Forest Model built by the chosen curves is used to predict other wells' coal body structure. The predicted results and the measured fracturing curves show that the results are in good agreement with the measured data. According to the application, the method can predicate the allocation of coal body structure, instruct hydraulic fracturing, which reduces development cost, and provide guidance to the logging response study on multi-regional coal body structure.
  • [1]
    苏现波, 陈江峰, 孙俊民, 等. 煤层气地质学与勘探开发[M]. 北京: 科学出版社, 2001.

    SU Xianbo, CHEN Jiangfeng, SUN Junmin, et al. Coalbed methane geology and exploration and development[M]. Beijing: Science Press, 2001.
    [2]
    倪小明, 苏现波, 张小东. 煤层气开发地质学[M]. 北京: 化学工业出版社, 2010.

    NI Xiaoming, SU Xianbo, ZHANG Xiaodong. Coal bed methane development geology[M]. Beijing: Chemical Industry Press, 2010.
    [3]
    袁崇孚. 构造煤和煤与瓦斯突出[J]. 瓦斯地质, 1986(1): 32–33. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202101017.htm

    YUAN Chongfu. Structural coal, coal and gas outburst[J]. Gas Geology, 1986(1): 32–33. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202101017.htm
    [4]
    汤友谊, 孙四清, 田高岭. 测井曲线计算机识别构造软煤的研究[J]. 煤炭学报, 2005, 30(3): 293–296. DOI: 10.3321/j.issn:0253-9993.2005.03.005

    TANG Youyi, SUN Siqing, TIAN Gaoling. Study of computer identifying on tectonic soft coal with well log[J]. Journal of China Coal Society, 2005, 30(3): 293–296. DOI: 10.3321/j.issn:0253-9993.2005.03.005
    [5]
    姜波, 秦勇, 琚宜文, 等. 煤层气成藏的构造应力场研究[J]. 中国矿业大学学报, 2005, 34(5): 564–569. DOI: 10.3321/j.issn:1000-1964.2005.05.005

    JIANG Bo, QIN Yong, JU Yiwen, et al. Research on tectonic stress field of generate and reservoir of coalbed methane[J]. Journal of China University of Mining & Technology, 2005, 34(5): 564–569. DOI: 10.3321/j.issn:1000-1964.2005.05.005
    [6]
    琚宜文, 姜波, 侯泉林, 等. 构造煤结构–成因新分类及其地质意义[J]. 煤炭学报, 2004, 29(5): 513–517. DOI: 10.3321/j.issn:0253-9993.2004.05.001

    JU Yiwen, JIANG Bo, HOU Quanlin, et al. The new structure-genetic classification system in tectonically deformed coals and its geological significance[J]. Journal of China Coal Society, 2004, 29(5): 513–517. DOI: 10.3321/j.issn:0253-9993.2004.05.001
    [7]
    马丽, 陈同俊, 王新, 等. 构造煤厚度定量预测技术新进展[J]. 煤田地质与勘探, 2018, 46(5): 66–72. DOI: 10.3969/j.issn.1001-1986.2018.05.011

    MA Li, CHEN Tongjun, WANG Xin, et al. Recent progress of quantitative prediction of tectonic coal thickness[J]. Coal Geology & Exploration, 2018, 46(5): 66–72. DOI: 10.3969/j.issn.1001-1986.2018.05.011
    [8]
    孙四清, 陈志胜, 韩保山, 等. 测井曲线判识构造软煤技术预测煤与瓦斯突出[J]. 煤田地质与勘探, 2006, 34(4): 65–67. DOI: 10.3969/j.issn.1001-1986.2006.04.018

    SUN Siqing, CHEN Zhisheng, HAN Baoshan, et al. Technology of identifying deformed soft coal using well log: An approach to the regional prediction of coal and gas outburst in coal mine[J]. Coal Geology & Exploration, 2006, 34(4): 65–67. DOI: 10.3969/j.issn.1001-1986.2006.04.018
    [9]
    张超, 黄华州, 徐德林, 等. 基于测井曲线的煤体结构判识[J]. 煤炭科学技术, 2017, 45(9): 47–51. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201709008.htm

    ZHANG Chao, HUANG Huazhou, XU Delin, et al. Coal structure identified based on logging curve[J]. Coal Science and Technology, 2017, 45(9): 47–51. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201709008.htm
    [10]
    刘振明, 王延斌, 韩文龙, 等. 基于测井资料的BP神经网络的煤体结构预测[J]. 中国煤炭, 2018, 44(6): 38–41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201806013.htm

    LIU Zhenming, WANG Yanbin, HAN Wenlong, et al. Prediction of coal structure with BP neural network based on shaft logging data[J]. China Coal, 2018, 44(6): 38–41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201806013.htm
    [11]
    龙王寅, 朱文伟, 徐静, 等. 利用测井曲线判识煤体结构探讨[J]. 中国煤田地质, 1999, 11(3): 64–66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT199903020.htm

    LONG Wangyin, ZHU Wenwei, XU Jing, et al. Discussion on identifying coal body structure using logging curve[J]. Coal Geology of China, 1999, 11(3): 64–66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT199903020.htm
    [12]
    谢学恒, 樊明珠. 基于测井响应的煤体结构定量判识方法[J]. 中国煤层气, 2013, 10(5): 27–29. DOI: 10.3969/j.issn.1672-3074.2013.05.007

    XIE Xueheng, FAN Mingzhu. Quantitative identification of deformed coal based on logging response[J]. China Coalbed Methane, 2013, 10(5): 27–29. DOI: 10.3969/j.issn.1672-3074.2013.05.007
    [13]
    高向东, 王延斌, 张崇崇. 钻井中煤体结构特征与井壁稳定性分析研究[J]. 煤炭科学技术, 2016, 44(5): 95–99. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201605019.htm

    GAO Xiangdong, WANG Yanbin, ZHANG Chongchong. Study and analysis on coal structure features during drilling operation and well wall stability[J]. Coal Science and Technology, 2016, 44(5): 95–99. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201605019.htm
    [14]
    李存磊, 杨兆彪, 孙晗森, 等. 多煤层区煤体结构测井解释模型构建[J]. 煤炭学报, 2020, 45(2): 721–730. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202002022.htm

    LI Cunlei, YANG Zhaobiao, SUN Hansen, et al. Construction of a logging interpretation model for coal structure from multi-coal seams area[J]. Journal of China Coal Society, 2020, 45(2): 721–730. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202002022.htm
    [15]
    刘振明, 王延斌, 韩文龙, 等. 基于测井资料的BP神经网络的煤体结构预测[J]. 中国煤炭, 2018, 44(6): 38–41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201806013.htm

    LIU Zhenming, WANG Yanbin, HAN Wenlong, et al. Prediction of coal structure with BP neural network based on shaft logging data[J]. China Coal, 2018, 44(6): 38–41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201806013.htm
    [16]
    刘最亮, 冯梅梅. 阳泉矿区新景矿构造煤发育规律的数值模拟[J]. 煤田地质与勘探, 2018, 46(4): 35–43. DOI: 10.3969/j.issn.1001-1986.2018.04.006

    LIU Zuiliang, FENG Meimei. Numerical simulation study on the development patterns of tectonically deformed coal in Xinjing coal mine in Yangquan[J]. Coal Geology & Exploration, 2018, 46(4): 35–43. DOI: 10.3969/j.issn.1001-1986.2018.04.006
    [17]
    汤友谊, 田高岭, 孙四清, 等. 对煤体结构形态及成因分类的改进和完善[J]. 焦作工学院学报(自然科学版), 2004, 23(3): 161–164. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB200403001.htm

    TANG Youyi, TIAN Gaoling, SUN Siqing, et al. Improvement and perfect way for the classification of the shape and cause formation of coal body texture[J]. Journal of Jiaozuo Institute of Technology(Natural Science), 2004, 23(3): 161–164. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB200403001.htm
    [18]
    徐光波, 赵金环, 崔周旗, 等. 沁水盆地南部安泽区块煤体结构测井识别研究[J]. 煤炭科学技术, 2018, 46(5): 179–184. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201805029.htm

    XU Guangbo, ZHAO Jinhuan, CUI Zhouqi, et al. Study on well logging identification of coal structure in Anze Block of southern Qinshui Basin[J]. Coal Science and Technology, 2018, 46(5): 179–184. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201805029.htm
    [19]
    韩晟, 韩坚舟, 赵璇, 等. 距离权重改进的Pearson相关系数及应用[J]. 石油地球物理勘探, 2019, 54(6): 1363–1370. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201906023.htm

    HAN Sheng, HAN Jianzhou, ZHAO Xuan, et al. A pearson correlation coefficient improved by spatial weight[J]. Oil Geophysical Prospecting, 2019, 54(6): 1363–1370. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201906023.htm
    [20]
    杨起, 韩德馨. 中国煤田地质学[M]. 北京: 煤炭工业出版社, 1980.

    YANG Qi, HAN Dexin. China coal geology[M]. Beijing: China Coal Industry Publishing House, 1980.
    [21]
    王绍清, 唐跃刚. 神东矿区煤岩学特征及煤相[J]. 中国煤田地质, 2007, 19(5): 4–7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT200705001.htm

    WANG Shaoqing, TANG Yuegang. Coal petrological characteristics and coal facies in Shendong mining area[J]. Coal Geology of China, 2007, 19(5): 4–7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT200705001.htm
    [22]
    胡社荣, 潘响亮, 张喜臣, 等. 煤相研究方法综述[J]. 地质科技情报, 1998, 17(1): 62–66. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ801.013.htm

    HU Sherong, PAN Xiangliang, ZHANG Xichen, et al. Overview of research methods of coal facies[J]. Geological Science and Technology Information, 1998, 17(1): 62–66. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ801.013.htm
    [23]
    汤友谊, 孙四清, 郭纯, 等. 不同煤体结构类型煤分层视电阻率值的测试[J]. 煤炭科学技术, 2005, 33(3): 70–72. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ20050300J.htm

    TANG Youyi, SUN Siqing, GUO Chun, et al. Measurement of apparent resistivity value for coal slices of different seam structures[J]. Coal Science and Technology, 2005, 33(3): 70–72. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ20050300J.htm
    [24]
    陈健杰, 江林华, 张玉贵, 等. 不同煤体结构类型煤的导电性质研究[J]. 煤炭科学技术, 2011, 39(7): 90–92. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201107023.htm

    CHEN Jianjie, JIANG Linhua, ZHANG Yugui, et al. Study on coal conductive properties of different coal structure[J]. Coal Science and Technology, 2011, 39(7): 90–92. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201107023.htm
    [25]
    谢楠. 沁水盆地郑庄区块煤层气井压裂排采效果与影响因素分析[D]. 北京: 中国地质大学(北京), 2017.

    XIE Nan. Analysis on fracturing effect and influencing factors of coalbed methane wells in Zhengzhuang block, Qinshui Basin[D]. Beijing: China University of Geosciences(Beijing), 2017.
  • Cited by

    Periodical cited type(14)

    1. 王大兴,胡海燕,邹佳群,王涛,朱根根,陈笑宇,梁烁. 准噶尔盆地东道海子凹陷二叠系下乌尔禾组陆相页岩气形成富集条件及主控因素. 地质科技通报. 2024(04): 98-112 .
    2. 任诺,宋怀雷,杨超,王文涛. 页岩在水压致裂过程中破裂规律的数值模拟研究. 水利规划与设计. 2023(01): 101-107 .
    3. 邱凯旋,李恒,郝世彦,张丽霞,唐永槐,马玉珊. 含砂岩薄互层陆相页岩气藏生产预测模型研究. 非常规油气. 2023(01): 111-121 .
    4. 李泽帆,陈相霖,李树刚,郭睿良,李泳,刘鹏. 高—过成熟页岩CH_4/N_2/CO_2混合气体竞争吸附特征与地质意义. 天然气地球科学. 2023(01): 169-180 .
    5. 魏若飞,信凯. 鄂尔多斯盆地东缘石西区块煤层气及致密砂岩气资源潜力评价. 中国煤炭地质. 2022(07): 7-11+38 .
    6. 李海,赵昌杰,王文涛. 不同层理倾角与石英含量下页岩破裂过程数值试验研究. 水利规划与设计. 2022(11): 108-113+167 .
    7. 李浩. 延长探区南部盒8段稀土元素地球化学示踪. 云南化工. 2021(06): 129-132 .
    8. 陆雨诗,胡勇,侯云东,孙继峰,何文祥,高小洋,司锦,宋雯馨. 鄂尔多斯盆地西缘羊虎沟组微量元素地球化学特征及沉积环境指示意义. 科学技术与工程. 2021(28): 11999-12009 .
    9. 客昆,秦建华,牟必鑫,余谦,魏洪刚,郝学峰,陈杨,客达,周家云,龚大兴. 楚雄盆地上三叠统舍资组泥页岩储层特征分析——以滇禄地3井为例. 科学技术与工程. 2021(28): 12020-12030 .
    10. 娄义黎,邬忠虎,王安礼,左宇军,刘镐,孙文吉斌. 流固耦合作用下页岩破裂过程的数值模拟. 煤田地质与勘探. 2020(01): 105-112 . 本站查看
    11. 王羽,汪丽华,王建强,王彦飞. 利用微米X射线显微镜研究陆相延长组页岩孔隙结构特征. 岩矿测试. 2020(04): 566-577 .
    12. 和钰凯,李贤庆,魏强,张学庆,邹晓艳,张亚超,李阳阳. 淮南潘谢矿区石盒子组煤系页岩气储层孔隙结构特征及影响因素. 科学技术与工程. 2020(33): 13618-13627 .
    13. 孙细宁,陈奕奕,王桂成,姜呈馥,许小强. 延长探区陆相页岩气产能影响因素分析. 复杂油气藏. 2019(04): 8-14 .
    14. 景丰. 陆相页岩气水平井中增韧防气窜固井水泥浆体系的研究. 石油化工应用. 2018(07): 5-10 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (228) PDF downloads (25) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return