LIU Zuiliang, ZHANG Fenxuan, ZHANG Jifeng, ZHOU Guangyu, ZHAO Hui, ZHANG Xin. Depth correction technique of electrical marker based on electrical field component of CSAMT[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 24-32. DOI: 10.3969/j.issn.1001-1986.2021.04.004
Citation: LIU Zuiliang, ZHANG Fenxuan, ZHANG Jifeng, ZHOU Guangyu, ZHAO Hui, ZHANG Xin. Depth correction technique of electrical marker based on electrical field component of CSAMT[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 24-32. DOI: 10.3969/j.issn.1001-1986.2021.04.004

Depth correction technique of electrical marker based on electrical field component of CSAMT

More Information
  • Received Date: December 09, 2020
  • Revised Date: April 27, 2021
  • Available Online: September 09, 2021
  • Published Date: August 24, 2021
  • Controlled Source audio-frequency Magnetotellurics(CSAMT) is an important geophysical method to detect water-rich areas and goafs in coal strata. However, the detection depth error is relatively large. Therefore, the electrical marker layer is used for depth correction to achieve the purpose of accurate interpretation of strata in this paper. A method for calculating all time apparent resistivity based on single component of electric field is proposed. The apparent resistivity can be obtained by translation algorithm, which is simple and fast without iteration. The relationship between the differential extremum of the apparent resistivity and the electrical marker layer is analyzed, and the electrical marker layer is identified by the well logging resistivity curve, then the depth correction coefficient is calculated by the ratio. Finally, the correction depth of any measuring point is obtained by interpolation in the whole region. Depth correction is carried out for the survey line R280 data of working face 31004, Xinyuan Coal Mine, and the results show that the corrected depth is in better agreement with the actual formation. Through comparison and verification of the known of known water-filled goaf boundary, water spraying point and borehole data, the desired goals are achieved. This method provides a new idea for fine data processing and interpretation by CSAMT in coal strata.
  • [1]
    GOLDSTEIN M A, STRANGWAY D W. Audio-frequency magnetitellurics with a grounded-electric dipole source[J]. Geophysics, 1975, 40(4): 669–683. DOI: 10.1190/1.1440558
    [2]
    汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.

    TANG Jingtian, HE Jishan. Controlled-source audio magnetotelluric method and its application[M]. Changsha: Central South University Press, 2005.
    [3]
    KAUFMAN A A, KELLER G V. Frequency and transient soundings[M]. New York: Elsevier Science Publishing Company, 1983.
    [4]
    石昆法. 可控源音频大地电磁法理论与应用[M]. 北京: 科学出版社, 1999.

    SHI Kunfa. Controlled source audio-frequency magnetotelluric theory and application(in Chinese)[M]. Beijing: Science Press, 1999.
    [5]
    AN Zhiguo, DI Qingyun. Application of the CSAMT method for exploring deep coal mines in Fujian Province, southeastern China[J]. Journal of Environmental and Engineering Geophysics, 2010, 15(4): 243–249. DOI: 10.2113/JEEG15.4.243
    [6]
    张继锋, 刘寄仁, 冯兵, 等. 三维陆地可控源电磁法有限元模型降阶快速正演[J]. 地球物理学报, 2020, 63(9): 3520–3533. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202009024.htm

    ZHANG Jifeng, LIU Jiren, FENG Bing, et al. Fast forward modeling of the 3D land controlled-source electromagnetic method based on model reduction[J]. Chinese Journal of Geophysics, 2020, 63(9): 3520–3533. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202009024.htm
    [7]
    何继善. 可控源音频大地电磁法[M]. 长沙: 中南大学出版社, 1990.

    HE Jishan. Controlled source audio-frequency magnetotellurics method(in Chinese)[M]. Changsha: Central South University Press, 1990.
    [8]
    闫述, 薛国强, 邱卫忠, 等. CSAMT单分量数据解释方法[J]. 地球物理学报, 2017, 60(1): 349–359. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201701030.htm

    YAN Shu, XUE Guoqiang, QIU Weizhong, et al. Interpretation of CSAMT single-component data[J]. Chinese Journal of Geophysics, 2017, 60(1): 349–359. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201701030.htm
    [9]
    何继善. 广域电磁测深法研究[J]. 中南大学学报(自然科学版), 2010, 41(3): 1065–1072. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201003043.htm

    HE Jishan. Wide field electromagnetic sounding methods[J]. Journal of Central South University(Science and Technology), 2010, 41(3): 1065–1072. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201003043.htm
    [10]
    何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.

    HE Jishan. Wide field electromagnetic methods and electrical method with pseudo-random signal(in Chinese)[M]. Beijing: Higher Education Press, 2010.
    [11]
    陈卫营, 薛国强. 广域电磁法中垂直磁场分量的分析与应用[J]. 物探与化探, 2015, 39(2): 358–361. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201502024.htm

    CHEN Weiying, XUE Guoqiang. The analysis and application of the vertical magnetic component in wide field electromagnetic method[J]. Geophysical and Geo-chemical Exploration, 2015, 39(2): 358–361. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201502024.htm
    [12]
    王顺国, 熊彬, 王有学, 等. 广域电磁法H–Hz方式波数域的一次场特征[J]. 桂林理工大学学报, 2012, 32(2): 179–183. DOI: 10.3969/j.issn.1674-9057.2012.02.005

    WANG Shunguo, XIONG Bin, WANG Youxue, et al. Wave-number domain features of primary field of H-Hz arrangement wide field electromagnetic method[J]. Journal of Guilin University of Technology, 2012, 32(2): 179–183. DOI: 10.3969/j.issn.1674-9057.2012.02.005
    [13]
    邱卫忠, 闫述, 薛国强, 等. CSAMT的各分量在山地精细勘探中的作用[J]. 地球物理学进展, 2011, 26(2): 664–668. DOI: 10.3969/j.issn.1004-2903.2011.02.035

    QIU Weizhong, YAN Shu, XUE Guoqiang, et al. Action of CSAMT field components in mountainous fine prospecting[J]. Progress in Geophysics, 2011, 26(2): 664–668. DOI: 10.3969/j.issn.1004-2903.2011.02.035
    [14]
    李帝铨, 谢维, 程党性. E-Ex广域电磁法三维数值模拟[J]. 中国有色金属学报, 2013, 23(9): 2459–2470.

    LI Diquan, XIE Wei, CHENG Dangxing. Three-dimensional modeling for E-Ex wide field electromagnetic methods[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(9): 2459–2470.
    [15]
    武建平, 张超, 陈剑平, 等. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066–1072. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005012.htm

    WU Jianping, ZHANG Chao, CHEN Jianping, et al. Three dimensional finite element simulation of wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 1066–1072. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005012.htm
    [16]
    胡涂, 李帝铨. EEx广域电磁法对低阻薄层分辨能力探讨[J]. 物探化探计算技术, 2014, 36(3): 297–303. DOI: 10.3969/j.issn.1001-1749.2014.03.08

    HU Tu, LI Diquan. Distinguish ability on thin resistant layered structure of E-Ex mode of wide field electromagnetic sounding method[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(3): 297–303. DOI: 10.3969/j.issn.1001-1749.2014.03.08
    [17]
    王永兵, 尹文斌, 张磊. 航空广域电磁法初步探索[J]. 物探与化探, 2020, 44(5): 1059–1065. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005011.htm

    WANG Yongbing, YIN Wenbin, ZHANG Lei. A preliminary exploration of the wide field electromagnetic method in aerogeophysical prospecting[J]. Geophysical and Geochemical Exploration, 2020, 44 (5): 1059–1065. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005011.htm
    [18]
    王若, 王妙月, 底青云, 等. CSAMT三维单分量有限元正演[J]. 地球物理学进展, 2014, 29(2): 839–845. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201402049.htm

    WANG Ruo, WANG Miaoyue, DI Qingyun, et al. 3D1C CSAMT modeling using finite element method[J]. Progress in Geophysics, 2014, 29(2): 839–845. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201402049.htm
    [19]
    刘最亮, 王鹤宇, 冯兵, 等. 基于电性标志层识别的瞬变电磁精准处理技术[J]. 煤炭学报, 2019, 44(8): 2346–2355. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908009.htm

    LIU Zuiliang, WANG Heyu, FENG Bing, et al. TEM data accurate processing technology based on electrical marker layer[J]. Journal of China Coal Society, 2019, 44(8): 2346–2355. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908009.htm
    [20]
    伏海涛, 罗维斌, 丁志军, 等. 水平电偶极源层状模型垂直磁场全区视电阻率计算方法[J]. 物探与化探, 2019, 43(6): 1309–1319. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201906019.htm

    FU Haitao, LUO Weibin, DING Zhijun, et al. The calculation method of whole zone apparent resistivity of vertical magnetic field on the surface of layered model excited by horizontal electric dipole source[J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1309–1319. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201906019.htm
    [21]
    佟铁钢, 刘春明, 何继善. CSAMT全区电阻率法数值模拟及应用探讨[J]. 地球物理学进展, 2009, 24(5): 1855–1860. DOI: 10.3969/j.issn.1004-2903.2009.05.041

    TONG Tiegang, LIU Chunming, HE Jishan. Numerical simulation and application discussion of the CSAMT full-zone resistivity method[J]. Progress in Geophysics, 2009, 24(5): 1855–1860. DOI: 10.3969/j.issn.1004-2903.2009.05.041

Catalog

    Article Metrics

    Article views (260) PDF downloads (41) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return