Citation: | ZOU Guangui, REN Ke, JI Yin, Ding Jianyu, ZHANG Shaomin. Fault recognition based on principal component analysis and k-nearest neighbor algorithm[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 15-23. DOI: 10.3969/j.issn.1001-1986.2021.04.003 |
[1] |
董守华, 石亚丁, 汪洋. 地震多参数BP人工神经网络自动识别小断层[J]. 中国矿业大学学报, 1997, 26(3): 14-18. DOI: 10.3321/j.issn:1000-1964.1997.03.004
DONG Shouhua, SHI Yading, WANG Yang. Automatic recognition of small fault by BP artificial nervous network from multiple seismic parameters[J]. China University of Mining and Technology, 1997, 26(3): 14-18. DOI: 10.3321/j.issn:1000-1964.1997.03.004
|
[2] |
BAHORICH M, FARMER S L. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube[J]. AAPG Bulletin, 1995, 14(10): 1566. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=LEEDFF000014000010001053000001&idtype=cvips&gifs=Yes
|
[3] |
ALBINHASSAN N M, MARFURT K. Fault detection using Hough transforms[C]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 2003. 2003: 1719-1721.
|
[4] |
PEDERSEN S I, RANDEN T, SONNELAND L, et al. Automatic fault extraction using artificial ants[C]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 2002. 2002: 512-515.
|
[5] |
ADMASU F, BACK S, TOENNIES K. Autotracking of faults on 3D seismic data[J]. Geophysics, 2006, 71(6): 49-53. DOI: 10.1190/1.2358399
|
[6] |
LU Cai, YUAN Mingkai, WANG Qi, et al. Application of multi-attributes fused volume rendering techniques in 3D seismic interpretation[C]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 2014. 2014: 1609-1613.
|
[7] |
孙振宇, 彭苏萍, 邹冠贵. 基于SVM算法的地震小断层自动识别[J]. 煤炭学报, 2017, 42(11): 2945-2952. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201711020.htm
SUN Zhenyu, PENG Suping, ZOU Guangui, Automatic identification of small faults based on SVM and seismic data[J]. Journal of China Coal Society, 2017, 42(11): 2945-2952. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201711020.htm
|
[8] |
DI Haibin, SHAFIQ A, WANG Zhen, et al. Improving seismic fault detection by super-attribute-based classification[J]. Interpretation, 2019, 7(3): 251-267. DOI: 10.1190/INT-2018-0188.1
|
[9] |
ZOU Guangui, REN Ke, SUN Zhenyu, et al. Fault interpretation using a support vector machine: A study based on 3D seismic mapping of the Zhaozhuang Coal Mine in the Qinshui Basin, China[J]. Journal of Applied Geophysics, 2019, 171: 103870. DOI: 10.1016/j.jappgeo.2019.103870
|
[10] |
BARNES A E. A filter to improve seismic discontinuity data for fault interpretation[J]. Geophysics, 2006, 71(3): 1. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006Geop...71P...1B&db_key=PHY&link_type=ABSTRACT
|
[11] |
BAVKAR S, SAHARE S. PCA based single channel speech enhancement method for highly noisy environment[C]//2013 International Conference on Advances in Computing, Communications and Informatics(ICACCI). IEEE, 2013: 1103-1107.
|
[12] |
IWAI M, KOBAYASHI K. Noise reduction in magnetocardiograph based on time-shift PCA just using measurement data[C]// IEEE. 2018 IEEE International Magnetics Conference(INTER MAG). 2018: 1.
|
[13] |
ARAYA M, DAHLKE T, FROGNER C, et al. Automated fault detection without seismic processing[J]. The Leading Edge, 2017, 36(3): 208-214. DOI: 10.1190/tle36030208.1
|
[14] |
JAAFAR H, RAMLI N H, NASIR A S A. An improvement to the k-nearest neighbor classifier for ECG database[J]. IOP Conference Series: Materials Science and Engineering, 2018, 318: 012046. DOI: 10.1088/1757-899X/318/1/012046
|
[15] |
AHA W, KIBLER D, ALBERT M. Instance-based learning algorithms[J]. Machine Learning, 1991, 6(1): 37-66. http://archive.numdam.org/numdam-bin/item?id=ITA_2014__48_2_209_0
|
[16] |
WOLD S. Principal component analysis[J]. Chemometrics & Intelligent Laboratory Systems, 1987, 2(1): 37-52.
|
[17] |
JOLLIFFE I T. Principal component analysis[J]. Journal of Marketing Research, 2002, 87(4): 513. http://www.worldcat.org/wcpa/oclc/48907152?page=frame&url=http%3A%2F%2Fwww.gbv.de%2Fdms%2Fgoettingen%2F346510511.pdf%26checksum%3D1e5f69cdbb2fbf6a42fa3aff3465c07c&title=&linktype=digitalObject&detail=
|
[18] |
MINCHAI H, ZHENMIN Q. Identification of the pesticide fluorescence spectroscopy based on the PCA and KNN[C]// IEEE. 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE). 2010, 3: 184-186.
|
[19] |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016.
|
[20] |
COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27. DOI: 10.1109/TIT.1967.1053964
|
[21] |
PETERSON L. K-nearest neighbor[J]. Scholarpedia, 2009, 4(2): 1883. DOI: 10.4249/scholarpedia.1883
|
[22] |
COST S, SALZBERG S. A weighted nearest neighbor algorithm for learning with symbolic features[J]. Machine Learning, 1993, 10(1): 57-78. DOI: 10.1007/BF00993481
|
[23] |
II R, FUKUNAGA K. The optimal distance measure for nearest neighbor classification[J]. IEEE Transactions on Information Theory, 1981, 27(5): 622-627. DOI: 10.1109/TIT.1981.1056403
|
[24] |
WRONA T, PAN I, GAWTHORPE R L, et al. Seismic facies analysis using machine learning[J]. Geophysics, 2018, 83(5): 83-95. DOI: 10.1190/geo2017-0595.1
|
[25] |
ZHANG Zhongheng. Introduction to machine learning: K-nearest neighbors[J]. Annals of Translational Medicine, 2016, 4(11): 218. DOI: 10.21037/atm.2016.03.37
|