ZOU Guangui, REN Ke, JI Yin, Ding Jianyu, ZHANG Shaomin. Fault recognition based on principal component analysis and k-nearest neighbor algorithm[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 15-23. DOI: 10.3969/j.issn.1001-1986.2021.04.003
Citation: ZOU Guangui, REN Ke, JI Yin, Ding Jianyu, ZHANG Shaomin. Fault recognition based on principal component analysis and k-nearest neighbor algorithm[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 15-23. DOI: 10.3969/j.issn.1001-1986.2021.04.003

Fault recognition based on principal component analysis and k-nearest neighbor algorithm

More Information
  • Received Date: October 13, 2020
  • Revised Date: November 10, 2020
  • Available Online: September 09, 2021
  • Published Date: August 24, 2021
  • Faults are geological structures that can cause disasters and thereby affect the safety of coal mines. Insight into the distribution of faults is one of the main purposes of 3D seismic exploration in coal mines. With respect to human-computer interaction in the interpretation of faults, the reliability of fault interpretation depends to a certain extent on the interpreter's knowledge. We propose an algorithm based on principal components and nearest neighbors to detect the distribution of faults along target horizons. The Yangdong Coal Mine of Fengfeng Mining Area is selected as the research area, and ten seismic attributes are extracted from the data obtained via three-dimensional seismic acquisition and high-precision processing of the mining area. Principal component analysis(PCA) is used to integrate the aforementioned ten seismic attributes into six integrated attributes. At the same time, the attribute information is combined with the fault information of 139 points determined from 15 wells and 3 roadways in the mining area to construct a known data set. Based on these data, two sets of data were constructed. The ratio of training to testing data for the first and second data set was 9:1 and 3:7, respectively. Using these data sets and the 10-fold cross-validation method, the accuracy of fault recognition based on the k-nearest neighbors(kNN) algorithm was determined to be 87.75% for data set 1 and 71.63% for data set 2. This indicates that the accuracy of fault identification is closely related to the number of data sets. In particular, when the number of training data sets is greater than that of the testing data sets, the accuracy of fault identification is higher. The attributes obtained after dimensionality reduction via PCA were used as inputs in the evaluation of the classification results of the KNN model, and the classification accuracy rates were calculated to be 89.23% for data set 1 and 73.79% for data set 2, respectively. This is because PCA reduces the dimensionality of the original input features, thus reducing the amount of calculation required and increasing the characterization capability of these features. The results show that a combination of the PCA and kNN methods can effectively identify fault distribution, and improve the efficiency of fault interpretation.
  • [1]
    董守华, 石亚丁, 汪洋. 地震多参数BP人工神经网络自动识别小断层[J]. 中国矿业大学学报, 1997, 26(3): 14-18. DOI: 10.3321/j.issn:1000-1964.1997.03.004

    DONG Shouhua, SHI Yading, WANG Yang. Automatic recognition of small fault by BP artificial nervous network from multiple seismic parameters[J]. China University of Mining and Technology, 1997, 26(3): 14-18. DOI: 10.3321/j.issn:1000-1964.1997.03.004
    [2]
    BAHORICH M, FARMER S L. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube[J]. AAPG Bulletin, 1995, 14(10): 1566. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=LEEDFF000014000010001053000001&idtype=cvips&gifs=Yes
    [3]
    ALBINHASSAN N M, MARFURT K. Fault detection using Hough transforms[C]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 2003. 2003: 1719-1721.
    [4]
    PEDERSEN S I, RANDEN T, SONNELAND L, et al. Automatic fault extraction using artificial ants[C]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 2002. 2002: 512-515.
    [5]
    ADMASU F, BACK S, TOENNIES K. Autotracking of faults on 3D seismic data[J]. Geophysics, 2006, 71(6): 49-53. DOI: 10.1190/1.2358399
    [6]
    LU Cai, YUAN Mingkai, WANG Qi, et al. Application of multi-attributes fused volume rendering techniques in 3D seismic interpretation[C]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 2014. 2014: 1609-1613.
    [7]
    孙振宇, 彭苏萍, 邹冠贵. 基于SVM算法的地震小断层自动识别[J]. 煤炭学报, 2017, 42(11): 2945-2952. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201711020.htm

    SUN Zhenyu, PENG Suping, ZOU Guangui, Automatic identification of small faults based on SVM and seismic data[J]. Journal of China Coal Society, 2017, 42(11): 2945-2952. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201711020.htm
    [8]
    DI Haibin, SHAFIQ A, WANG Zhen, et al. Improving seismic fault detection by super-attribute-based classification[J]. Interpretation, 2019, 7(3): 251-267. DOI: 10.1190/INT-2018-0188.1
    [9]
    ZOU Guangui, REN Ke, SUN Zhenyu, et al. Fault interpretation using a support vector machine: A study based on 3D seismic mapping of the Zhaozhuang Coal Mine in the Qinshui Basin, China[J]. Journal of Applied Geophysics, 2019, 171: 103870. DOI: 10.1016/j.jappgeo.2019.103870
    [10]
    BARNES A E. A filter to improve seismic discontinuity data for fault interpretation[J]. Geophysics, 2006, 71(3): 1. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006Geop...71P...1B&db_key=PHY&link_type=ABSTRACT
    [11]
    BAVKAR S, SAHARE S. PCA based single channel speech enhancement method for highly noisy environment[C]//2013 International Conference on Advances in Computing, Communications and Informatics(ICACCI). IEEE, 2013: 1103-1107.
    [12]
    IWAI M, KOBAYASHI K. Noise reduction in magnetocardiograph based on time-shift PCA just using measurement data[C]// IEEE. 2018 IEEE International Magnetics Conference(INTER MAG). 2018: 1.
    [13]
    ARAYA M, DAHLKE T, FROGNER C, et al. Automated fault detection without seismic processing[J]. The Leading Edge, 2017, 36(3): 208-214. DOI: 10.1190/tle36030208.1
    [14]
    JAAFAR H, RAMLI N H, NASIR A S A. An improvement to the k-nearest neighbor classifier for ECG database[J]. IOP Conference Series: Materials Science and Engineering, 2018, 318: 012046. DOI: 10.1088/1757-899X/318/1/012046
    [15]
    AHA W, KIBLER D, ALBERT M. Instance-based learning algorithms[J]. Machine Learning, 1991, 6(1): 37-66. http://archive.numdam.org/numdam-bin/item?id=ITA_2014__48_2_209_0
    [16]
    WOLD S. Principal component analysis[J]. Chemometrics & Intelligent Laboratory Systems, 1987, 2(1): 37-52.
    [17]
    [18]
    MINCHAI H, ZHENMIN Q. Identification of the pesticide fluorescence spectroscopy based on the PCA and KNN[C]// IEEE. 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE). 2010, 3: 184-186.
    [19]
    周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.

    ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016.
    [20]
    COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27. DOI: 10.1109/TIT.1967.1053964
    [21]
    PETERSON L. K-nearest neighbor[J]. Scholarpedia, 2009, 4(2): 1883. DOI: 10.4249/scholarpedia.1883
    [22]
    COST S, SALZBERG S. A weighted nearest neighbor algorithm for learning with symbolic features[J]. Machine Learning, 1993, 10(1): 57-78. DOI: 10.1007/BF00993481
    [23]
    II R, FUKUNAGA K. The optimal distance measure for nearest neighbor classification[J]. IEEE Transactions on Information Theory, 1981, 27(5): 622-627. DOI: 10.1109/TIT.1981.1056403
    [24]
    WRONA T, PAN I, GAWTHORPE R L, et al. Seismic facies analysis using machine learning[J]. Geophysics, 2018, 83(5): 83-95. DOI: 10.1190/geo2017-0595.1
    [25]
    ZHANG Zhongheng. Introduction to machine learning: K-nearest neighbors[J]. Annals of Translational Medicine, 2016, 4(11): 218. DOI: 10.21037/atm.2016.03.37
  • Cited by

    Periodical cited type(25)

    1. 王博睿,张远航. 含隐伏断层底板原生缺陷致灾前兆研究. 煤炭技术. 2025(01): 216-220 .
    2. 张雪莲. 潞安矿区矿井水害及防治措施分析. 华北自然资源. 2025(01): 14-16+20 .
    3. 连会青,晏涛,尹尚先,徐斌,康佳,周旺,闫国成. 基于透明水文地质模型的工作面顶板水害预警研究. 煤炭科学技术. 2025(01): 259-271 .
    4. 牛亚豪,王畅,刘佳佳. 基于高精度差分定位法的水文测量自动化报警系统设计. 自动化与仪器仪表. 2024(01): 231-234 .
    5. 苏雄,李小龙,贺杰伟. 基于三维GIS的煤矿数据集成自动化监测系统. 自动化与仪表. 2024(03): 121-125 .
    6. 郝宪杰,李航,赵毅鑫,杨怀翔,杨波,刘科峰,李宜家. 基于日累积微震指标与水位关联效应的底板突水预警方法与应用. 岩石力学与工程学报. 2024(09): 2125-2139 .
    7. 曾一凡,于超,武强,赵菱尔,尹尚先,张博成,刘泽洋,崔雅帅,阚雪冬,黄浩. 煤矿防治水“三区”划分方法及其水害防治意义. 煤炭学报. 2024(08): 3605-3618 .
    8. 宗伟琴. 煤矿水害监测预警GIS平台研发及应用. 能源科技. 2024(05): 28-33 .
    9. 姚有利,寇杰,张孟浩. 基于博弈论组合赋权-TOPSIS的煤矿“一通三防”风险评估. 矿业安全与环保. 2024(06): 71-78 .
    10. 赵群,郝韶嵩. 水害风险预警系统在皖北煤电集团的设计研究. 煤炭与化工. 2023(02): 33-37 .
    11. 丁莹莹,卜昌森,连会青,尹尚先,徐斌,张丐卓,姚辉,董其金. 基于仿真平台的矿井突水淹没路径和逃生路径规划. 煤矿安全. 2023(05): 20-26 .
    12. 董书宁. 人工智能技术在煤矿水害防治智能化发展中的应用. 煤矿安全. 2023(05): 1-12 .
    13. 袁利伟,龙皓楠,李斌,李延林,曹浪,辛岩. 基于HMM算法的矿山水灾害链复杂演化网络模型构建及应用. 化工矿物与加工. 2023(08): 47-55 .
    14. 曾一凡,武强,赵苏启,苗耀武,张晔,梅傲霜,孟世豪,刘晓秀. 我国煤矿水害事故特征、致因与防治对策. 煤炭科学技术. 2023(07): 1-14 .
    15. 尹尚先,徐斌,尹慧超,曹敏,丁莹莹,梁满玉. 矿井水防治学科基本架构及内涵. 煤炭科学技术. 2023(07): 24-35 .
    16. 邱浩,李宏杰,李文,李江华,杜明泽,姜鹏. 煤矿水害智能预警系统关键架构及模型研究. 煤炭科学技术. 2023(07): 197-206 .
    17. 李鑫,孙亚军,徐智敏,陈歌. 矿山采动突水危险源划分与致灾危险性评价研究. 煤炭工程. 2023(09): 108-115 .
    18. 张党育,武斌,贾靖,赵立松,李玉宝. 基于微震数据及模型的煤矿水害“双驱动”预警体系构建与应用. 煤炭科学技术. 2023(S1): 242-255 .
    19. 张志武. 高密度电阻率法在承压水导升高度探测中的应用. 煤. 2022(06): 71-72+95 .
    20. 宋容. 基于多层关联规则算法的煤矿突出预警模型. 能源与环保. 2022(06): 300-305 .
    21. 许进鹏,周宇,浦早红,庞思远. 离层积水量估算方法及离层突水预测——以陕西招贤煤矿1304工作面突水为例. 煤炭学报. 2022(08): 3083-3090 .
    22. 张辰宇. 基于5G通信技术的矿井开采工作面环境监测系统. 能源与环保. 2022(11): 220-225 .
    23. 卓聪志. 首采区域内上覆含水层的富水特征及采区涌水量计算. 山西化工. 2022(07): 112-114 .
    24. 隋旺华. 矿山安全地质学:综述. 工程地质学报. 2021(04): 901-916 .
    25. 薛峰峰. 低位岩巷穿层探放技术在采空区水害治理中的应用. 陕西煤炭. 2021(05): 155-158 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (259) PDF downloads (31) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return