XIE Jia, LIU Yang, LI Xingqiang, LU Yulong, LI Ganlong. The application of Opposing Coils Transient Electromagnetics in the detection of karst subsidence area[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 212-218, 226. DOI: 10.3969/j.issn.1001-1986.2021.03.027
Citation: XIE Jia, LIU Yang, LI Xingqiang, LU Yulong, LI Ganlong. The application of Opposing Coils Transient Electromagnetics in the detection of karst subsidence area[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 212-218, 226. DOI: 10.3969/j.issn.1001-1986.2021.03.027

The application of Opposing Coils Transient Electromagnetics in the detection of karst subsidence area

More Information
  • Received Date: December 17, 2020
  • Revised Date: March 03, 2021
  • Published Date: June 24, 2021
  • Ground collapse caused by karst is both disastrous and covert. In order to forecast and control it effectively, a research area with strong karst collapse development was selected in this study, and a method that combines Opposing Coils Transient Electromagnetics with engineering geological drilling was used to verify the formation occurrence through the factors including buried depth of overburden, resistivity and isoline variation. The results of geophysical inversion maps and borehole information verification show that the Opposing Coils Transient Electromagnetics method can effectively identify the development of underground corrosion. Especially in the area where the conventional geophysical exploration methods may easily disturbed by the environmental factors, such method could achieve better application effect. Opposing Coils Transient Electromagnetics achieves effective forecast and prediction results in the developing areas of geological hazards and the karst-induced ground collapse, which could provide some theoretical and practical basis for research and analysis for similar circumstances.
  • [1]
    余政兴, 金福喜, 段选亮. 河床透-阻型岩溶塌陷形成机理[J]. 中国地质灾害与防治学报, 2020, 31(2): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202002010.htm

    YU Zhengxing, JIN Fuxi, DUAN Xuanliang. Formation mechanism of karst collapse with unconfined aquifer-aquitaed system in riverbed[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(2): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202002010.htm
    [2]
    杨歧焱, 彭远黔, 尼玛, 等. 日喀则城市活断层地球物理勘探方法和成果[J]. 地球物理学报, 2015, 58(6): 2137-2147. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201506027.htm

    YANG Qiyan, PENG Yuanqian, NI Ma, et al. Methods and results of geological prospecting along active faults in urban Xigazê[J]. Chinese Journal of Geophysics, 2015, 58(6): 2137-2147. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201506027.htm
    [3]
    肖宏跃, 雷宛, 杨威. 地质雷达特征图像与典型地质现象的对应关系[J]. 煤田地质与勘探, 2008, 36(4): 57-61. DOI: 10.3969/j.issn.1001-1986.2008.04.015

    XIAO Hongyue, LEI Wan, YANG Wei. Correspondence between geological characteristics of radar images and typical geological phenomenon[J]. Coal Geology & Exploration, 2008, 36(4): 57-61. DOI: 10.3969/j.issn.1001-1986.2008.04.015
    [4]
    刘新荣, 刘永权, 杨忠平, 等. 基于地质雷达的隧道综合超前预报技术[J]. 岩土工程学报, 2015, 37(增刊2): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2012.htm

    LIU Xinrong, LIU Yongquan, YANG Zhongping, et al. Synthetic advanced geological prediction technology for tunnels based on GPR[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(Sup. 2): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2012.htm
    [5]
    王喜迁, 孙明国, 张皓, 等. 高密度电法在岩溶探测中的应用[J]. 煤田地质与勘探, 2011, 39(5): 72-75. DOI: 10.3969/j.issn.1001-1986.2011.05.018

    WANG Xiqian, SUN Mingguo, ZHANG Hao, et al. Application of high density electrical technique in karst detection[J]. Coal Geology & Exploration, 2011, 39(5): 72-75. DOI: 10.3969/j.issn.1001-1986.2011.05.018
    [6]
    江玉乐, 张朝霞, 周清强. 高密度电阻率法在覆盖层厚度探测中的应用[J]. 煤田地质与勘探, 2007, 35(3): 69-71. DOI: 10.3969/j.issn.1001-1986.2007.03.020

    JIANG Yule, ZHANG Zhaoxia, ZHOU Qingqiang. Application of high density resistivity method to overcast thickness exploration[J]. Coal Geology & Exploration, 2007, 35(3): 69-71. DOI: 10.3969/j.issn.1001-1986.2007.03.020
    [7]
    董浩斌, 王传雷. 高密度电法的发展与应用[J]. 地学前缘, 2003, 10(1): 171-176. DOI: 10.3321/j.issn:1005-2321.2003.01.020

    DONG Haobin, WANG Chuanlei. Development and application of 2D resistivity imaging surveys[J]. Earth Science Frontiers, 2003, 10(1): 171-176. DOI: 10.3321/j.issn:1005-2321.2003.01.020
    [8]
    刘晓东, 张虎生, 朱伟忠. 高密度电法在工程物探中的应用[J]. 工程勘察, 2001(4): 64-66. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200104018.htm

    LIU Xiaodong, ZHANG Husheng, ZHU Weizhong. Application of high density electrical method in engineering geophysical exploration[J]. Geotechnical Investigation & Surveying, 2001(4): 64-66. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200104018.htm
    [9]
    倪进鑫, 周伟毅, 张云. 等值反磁通瞬变电磁法在人口聚集区岩溶塌陷调查中的应用[J]. 华北自然资源, 2020(3): 42-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGT202003016.htm

    NI Jinxin, ZHOU Weiyi, ZHANG Yun. Application of equivalent reverse-flux transient electromagnetic method in karst collapse investigation in population gathering area[J]. Huabei Natural Resources, 2020(3): 42-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGT202003016.htm
    [10]
    汪勇, 李伟, 朱能发, 等. 等值反磁通瞬变电磁法在地下构筑物探测中的应用研究[J]. 工程勘察, 2018(增刊1): 393-397. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZJKC201806001065.htm

    WANG Yong, LI Wei, ZHU Nengfa, et al. Application of the OCTEM in underground structures testing[J]. Geotechnical Investigation & Surveying, 2018(Sup. 1): 393-397. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZJKC201806001065.htm
    [11]
    高远. 等值反磁通瞬变电磁法对石膏矿采空区的探测分析[J]. 物探与化探, 2019, 43(6): 1404-1408. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201906031.htm

    GAO Yuan. The application effect on detecting goaf of gypsum mine by opposing coils transient electromagnetics method[J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1404-1408. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201906031.htm
    [12]
    邝金坚, 王鹤, 刘骏华. 等值反磁通瞬变电磁法在某铅锌矿找矿中的应用[J]. 西部探矿工程, 2020, 32(10): 139-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK202010047.htm

    KUANG Jinjian, WANG He, LIU Junhua. Application of opposing coils transient electromagnetics method in prospecting for a lead-zinc deposit[J]. West-China Exploration Engineering, 2020, 32(10): 139-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK202010047.htm
    [13]
    彭星亮, 席振铢, 王鹤, 等. 等值反磁通瞬变电磁法在地质灾害探测中的应用对比[J]. 西部探矿工程, 2018, 30(8): 147-150. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201808051.htm

    PENG Xingliang, XI Zhenzhu, WANG He, et al. Comparison of the application of opposing coils transient electromagnetics method in geological hazard detection[J]. West-China Exploration Engineering, 2018, 30(8): 147-150. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201808051.htm
    [14]
    高远. 等值反磁通瞬变电磁法在城镇地质灾害调查中的应用[J]. 煤田地质与勘探, 2018, 46(3): 152-156. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=d04b1012-11bd-414e-84c4-801e11cf9325

    GAO Yuan. The application of opposing coils transient electromagnetics method in geological hazard investigation of town[J]. Coal Geology & Exploration, 2018, 46(3): 152-156. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=d04b1012-11bd-414e-84c4-801e11cf9325
    [15]
    薛国强, 李貅, 底青云. 瞬变电磁法理论与应用研究进展[J]. 地球物理学进展, 2007, 22(4): 1195-1200. DOI: 10.3969/j.issn.1004-2903.2007.04.026

    XUE Guoqiang, LI Xiu, DI Qingyun. The progress of TEM in theory and application[J]. Progress in Geophysics, 2007, 22(4): 1195-1200. DOI: 10.3969/j.issn.1004-2903.2007.04.026
    [16]
    梁爽, 李志民. 瞬变电磁法在阳泉二矿探测积水采空区效果分析[J]. 煤田地质与勘探, 2003, 31(4): 49-51. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=31a5f117-6d5e-4210-a80b-62b6a7672528

    LIANG Shuang, LI Zhimin. Analysis of the effect by using TEM detecting water filled gob area in No. 2 Mine, Yangquan Mine Group[J]. Coal Geology & Exploration, 2003, 31(4): 49-51. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=31a5f117-6d5e-4210-a80b-62b6a7672528
    [17]
    梁爽. 瞬变电磁法在煤矿水害防治中的应用[J]. 煤田地质与勘探, 2012, 40(3): 70-73. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=ebc8a281-68da-49bd-9658-0191165e9c4d

    LIANG Shuang. The application of TEM in detecting water hazards in coal mines[J]. Coal Geology & Exploration, 2012, 40(3): 70-73. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=ebc8a281-68da-49bd-9658-0191165e9c4d
    [18]
    席振铢, 龙霞, 周胜, 等. 基于等值反磁通原理的浅层瞬变电磁法[J]. 地球物理学报, 2016, 59(9): 3428-3435. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201609025.htm

    XI Zhenzhu, LONG Xia, ZHOU Sheng, et al. Opposing coils transient electromagnetic method for shallow subsurface detection[J]. Chinese Journal of Geophysics, 2016, 59(9): 3428-3435. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201609025.htm
    [19]
    王银, 席振铢, 蒋欢, 等. 等值反磁通瞬变电磁法在探测岩溶病害中的应用[J]. 物探与化探, 2017, 41(2): 360-363. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201702026.htm

    WANG Yin, XI Zhenzhu, JIANG Huan, et al. The application research on the detection of karst disease of airport runway based on OCTEM[J]. Geophysical and Geochemical Exploration, 2017, 41(2): 360-363. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201702026.htm
    [20]
    李青, 周胜, 肖晓, 等. 基于等值反磁通瞬变电磁法的公路路基病害探测研究[J]. 工程地球物理学报, 2019, 16(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201901013.htm

    LI Qing, ZHOU Sheng, XIAO Xiao, et al. Research on highway subgrade defect detection based on opposing-coils transient electromagnetic method[J]. Chinese Journal of Engineering Geophysics, 2019, 16(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201901013.htm
  • Related Articles

    [1]XIE Haijun, LI Zhiqiang, LI Sheng. Finite element 2D forward modeling of DC method with line source[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(1): 194-199. DOI: 10.3969/j.issn.1001-1986.2019.01.030
    [2]LIU Fangdi, WANG Xuben, JIAO Jian, LUO Yixiang, HU Qinglong. 2.5D electromagnetic profiling forward modeling with finite difference method[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(1): 79-84. DOI: 10.3969/j.issn.1001-1986.2012.01.019
    [3]SHEN Jun, ZHANG Jian. Analysis and solution to boundary element of seepage in engineering[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(3): 59-62.
    [4]LI Qing-chun, SHAO Guang-zhou, LI Bin. Mixed boundary and frequency dispersion suppressing in elastic wave numerical simulation[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(4): 73-77.
    [5]ZHENG Shu-yan, LI Zhan-bin, LI Fu-sheng. Study of No.2 landslide erosion in Tongwang highway by numerical simulation of elastic-plastic finite element[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(4): 52-55.
    [6]LI Jin-xuan. Calculation of seepage for horizontal drainage project of slope[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(2): 31-33.
    [7]LIU Qing-wen, LIU Yan-ling, HAN De-pin. Two dimension numerical modeling of electrical penetrative detection in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(3): 48-52.
    [8]YIN Shang-xian, LI Yu-lin. The solving methods research of response functionin groundwater management[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(2): 33-35.
    [9]HAN De-pin, SHI ya-ding, LIU Qing-wen. One dimension numerical modeling of electrical penetrative detection in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(1): 52-54.
    [10]Liu Jidong. THE TOPOGRAPHIC CORRECTION OF THE ELECTRIC SOUNDING DATA BY THE BOUNDARY ELEMENT METHOD FOR ANOMALOUS POTENTIAL[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(3): 54-56.

Catalog

    Article Metrics

    Article views (429) PDF downloads (78) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return