YANG Qing, RONG Chuanxin, LI Mingjing, YANG Guobing. Freezing temperature field characteristics of multi-loop pipers under different working conditions at the interface of deep thick sand and clay[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(6): 224-232. DOI: 10.3969/j.issn.1001-1986.2020.06.030
Citation: YANG Qing, RONG Chuanxin, LI Mingjing, YANG Guobing. Freezing temperature field characteristics of multi-loop pipers under different working conditions at the interface of deep thick sand and clay[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(6): 224-232. DOI: 10.3969/j.issn.1001-1986.2020.06.030

Freezing temperature field characteristics of multi-loop pipers under different working conditions at the interface of deep thick sand and clay

Funds: 

National Natural Science Foundation of China(51374010,51878005);Engineering Research Center of the Ministry of Education of Anhui University of Science and Technology in 2020(JYBGCZX2020209)

More Information
  • Received Date: August 23, 2020
  • Revised Date: November 11, 2020
  • Published Date: December 24, 2020
  • The design scheme of multiple-loop pipe freezing wall is an effective method to solve the problem of deep freezing, In order to study the freezing temperature field characteristics of multiple-loop pipes under different working conditions at the boundary of deep thick sand and expansive clay, the XRD test results of the original cohesive soil at the boundary were taken. ANSYS numerical simulation was used to compare under the skewed and non-skewed conditions of fine sand and expansive clay. Studies have shown that:multiple-loop pipes are frozen without non-skewed, and the temperature field of the frozen wall of the fine sand layer and the expansive clay layer develops in a regular, symmetrical and orderly manner. The main freezing center ring tube, inner ring tube, middle-inner tube, middle-outer tube, the outer ring tube form an intersection process in turn. As the freezing time increases, the freezing temperature between the middle-inner ring and the middle-outer ring tube develops from a parabolic shape to a trapezoidal cooling shape, and the temperature difference decreases. The outer side of the inner and outer ring tubes is inverted. The cooling effect on the inside of the inner tube is obviously better than that on the outside of the outer tube. When skewed, the temperature field of the freezing wall is ir-regular in the temperature field, and the superposition of the freezing cold front is random and discrete. The formation time of the frozen wall of expansive clay is seriously lagging behind deviation and soil properties have a greater influence on the temperature of the frozen wall. The deviation has a particularly obvious effect on the expansive clay. It is more consistent with the multiple freezing pipe broken events that occurred in a mine's freezing shaft sinking at the sand-clay boundary of the formation above -400 m. The research results can provide a reference for similar deep mine frozen construction.
  • [1]
    陈湘生. 对深冻结井几个关键问题的探讨[J]. 煤炭科学技术,1999,27(1):36-38.

    CHEN Xiangsheng. Discussion on several key issues for deep frozen shaft[J]. Coal Science and Technology,1999,27(1):36-38.
    [2]
    高志宏,胡双平,张晓峰,等. 联络通道富水卵砾石层冻结施工冻结壁温度及变形的模型试验[J]. 西安科技大学学报,2020,40(3):408-416.

    GAO Zhihong,HU Shuangping,ZHANG Xiaofeng,et al. Model test of freezing wall temperature and deformation in freezing construction of water-rich gravel layer in connecting passage[J]. Journal of Xi'an University of Science and Technology,2020,40(3):408-416.
    [3]
    盛天宝,魏世义. 特厚黏土层多圈孔冻结壁温度场实测研究与工程应用[J]. 岩土工程学报,2012,34(8):1516-1521.

    SHENG Tianbao,WEI Shiyi. Measurement and engineering application of temperature field multiple-ring hole frozen wall in extra-thick clay strata[J]. Chinese Journal of Geotechnical Engineering,2012,34(8):1516-1521.
    [4]
    陈军浩,李栋伟. 多圈管冻结温度场特征分析及工程应用[J]. 冰川冻土,2016,38(6):1568-1574.

    CHEN Junhao,LI Dongwei. Temperature field frozen with multi-circle pipes in shaft sinking:Feature analysis and engineering application[J]. Journal of Glaciology and Geocryology,2016,38(6):1568-1574.
    [5]
    焦华喆,孙冠东,陈新明,等. 深厚冲积层多圈孔冻结壁温度场发展研究[J]. 煤炭学报,2018,43(增刊2):443-449.

    JIAO Huazhe,SUN Guandong,CHEN Xinming,et al. Development of temperature field of multiple circle freezing wall in deep alluvium[J]. Journal of China Coal Society,2018,43(Sup.2):443-449.
    [6]
    胡坤,周国庆,荆留杰,等. 深厚表土多圈管冻结温度场演变规律研究[J]. 采矿与安全工程学报,2010,27(2):149-153.

    HU Kun,ZHOU Guoqing,JING Liujie,et al. Experimental research on multiple-circle freezing temperature field for thick top soil[J]. Journal of Mining and Safety Engineering,2010,27(2):149-153.
    [7]
    林斌,王鹏,侯海杰,等. 深厚黏土层多圈管冻结壁温度场发展规律[J]. 煤田地质与勘探,2018,46(4):135-141.

    LIN Bin,WANG Peng,HOU Haijie,et al. Development law of the multiple-loop tube freezing temperature field in deep thick clay layer[J]. Coal Geology & Exploration,2018,46(4):135-141.
    [8]
    李怀鑫,林斌,王鹏. 双圈管冻结壁温度场形成特性及影响因素[J]. 煤田地质与勘探,2020,48(3):169-175.

    LI Huaixin,LIN Bin,WANG Peng. Influence factors and formation properties of temperature field in the frozen wall of double ring pipes[J]. Coal Geology & Exploration,2020,48(3):169-175.
    [9]
    荣传新,尹建辉,王彬,等. 深厚冲积层破损井筒修复过程中的控制冻结技术[J]. 煤炭科学技术,2020,48(1):157-166.

    RONG Chuanxin,YIN Jianhui,WANG Bin,et al. Controlled freezing technology for repairing damaged shaft in deep alluvium[J]. Coal Science and Technology,2020,48(1):157-166.
    [10]
    汪仁和,王伟. 冻结孔偏斜下冻结壁温度场的形成特征与分析[J]. 岩土工程学报,2003,25(6):658-661.

    WANG Renhe,WANG Wei. Analysis for features of the freezing temperature field under deflective pipes[J]. Chinese Journal of Geotechnical Engineering,2003,25(6):658-661.
    [11]
    汪仁和,曹荣斌. 双排管冻结下冻结壁温度场形成特征的数值分析[J]. 冰川冻土,2002,24(2):181-185.

    WANG Renhe,CAO Rongbin. Numerical analysis of the temperature field features in the frozen wall with double rows of freezing pipes[J]. Journal of Glaciology and Geocryology,2002,24(2):181-185.
    [12]
    陈文豹,吴里扬,李功洲,等. 程村主副井深厚冲积层冻结法凿井技术[M]. 北京:煤炭工业出版社,2008.

    CHEN Wenbao,WU Liyang,LI Gongzhou,et al. Freezing sinking technology in deep alluvium of Chengcun main and auxiliary shafts[M]. Beijing:Coal Industry Press,2008.
    [13]
    王磊,陈世官,李祖勇. 软岩冻结凿井井帮稳定性影响因素敏感性分析[J]. 西安科技大学学报,2019,38(1):79-84.

    WANG Lei,CHEN Shiguan,LI Zuyong. Sensitivity analysis of influential factors of surrounding rock stability in soft rock freezing sinking[J]. Journal of Xi'an University of Science and Technology,2019,38(1):79-84.
    [14]
    王千星,杨维好,王衍森. 厚表土斜井冻结凿井期井壁混凝土应变实测研究[J]. 采矿与安全工程学报,2016,33(4):655−661.

    WANG Qianxing,YANG Weihao,WANG Yansen. Study on concrete strain of inclined shaft lining in deep alluvium during freezing sinking period[J]. Journal of Mining & Safety Engineering,2016,33(4):655−661.
    [15]
    程桦,张亮亮,姚直书,等. 厚表土薄基岩钻井井筒突水溃砂次生竖向受压破坏机理研究[J]. 煤炭工程,2020,52(1):1-7.

    CHENG Hua,ZHANG Liangliang,YAO Zhishu,et al. Study on the mechanism of secondary vertical compression failure caused by water and sand inrush during shaft boring through thick alluvium and thin bedrock[J]. Coal Engineering,2020,52(1):1-7.
    [16]
    胡向东,方涛,韩延广. 环形双圈管冻结稳态温度场广义解析解[J]. 煤炭学报,2017,42(9):2287-2294.

    HU Xiangdong,FANG Tao,HAN Yanguang. Generalized analytical solution to steady-state temperature field of double-circle-piped freezing[J]. Journal of China Coal Society,2017,42(9):2287-2294.
    [17]
    胡向东,汪洋. 三排管冻结温度场的势函数叠加法解析解[J]. 岩石力学与工程学报,2012,31(5):1071-1080.

    HU Xiangdong,WANG Yang. Analytical solution of three-row-piped frozen temperature field by means of superposition of potential function[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(5):1071-1080.
    [18]
    马茂艳,程桦,荣传新. 杨村煤矿主井深厚钙质黏土层冻结施工技术[J]. 煤炭工程,2017,49(9):14-18.

    MA Maoyan,CHENG Hua,RONG Chuanxin. Freezing construction technology for main shaft of Yangcun coal mine in deep and thick calcareous clay layer[J]. Coal Engineering,2017,49(9):14-18.
    [19]
    蒲海波. 用X射线衍射分析鉴定黏土矿物的方法[J]. 勘察科学技术,2011(5):12-14.

    PU Haibo. Method of identifying clay minerals by X-ray diffraction analysis[J]. Site Investigation Science and Technology,2011(5):12-14.
    [20]
    田玉新. 淮南矿区厚松散层结构特征及其沉积环境研究[D]. 徐州:中国矿业大学,2014.

    TIAN Yuxin. Study on the structural characteristics and sedimentary environment of thick loose layer in Huainan mining area[D]. Xuzhou:China University of Mining and Technology,2014.
    [21]
    杨青. 热力耦合作用下冻结壁温度场与冻胀力分布规律研究[D]. 淮南:安徽理工大学,2015. YANG Qing. Research on distribution of the temperature field and heaving force in the frozen wall based on thermal-mechanics coupling effect[D]. Huainan:Anhui University of Science and Technology,2015.
    [22]
    殷宗泽. 土工原理[M]. 北京:中国水利水电出版社,2007.

    YIN Zongze. Geotechnical principles[M]. Beijing:China Water Power Press,2007.
  • Cited by

    Periodical cited type(3)

    1. 侯艳,柯沛,宁宏晓,刘宁,王天云,李陶,孙小萍,张伟. 沁水盆地煤层气地震资料处理技术. 非常规油气. 2024(02): 9-20 .
    2. 童思友,刘岗,徐秀刚,王忠成,王金刚,杨德宽. 基于UNet结构生成对抗网络的海底地震勘探数据混叠噪声压制方法. 中国海洋大学学报(自然科学版). 2024(08): 123-131 .
    3. 叶宇晗,何宗斌. 基于高效字典学习算法的地震数据去噪. 科学技术与工程. 2024(25): 10677-10687 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (136) PDF downloads (8) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return