Citation: | YANG Qing, RONG Chuanxin, LI Mingjing, YANG Guobing. Freezing temperature field characteristics of multi-loop pipers under different working conditions at the interface of deep thick sand and clay[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(6): 224-232. DOI: 10.3969/j.issn.1001-1986.2020.06.030 |
[1] |
陈湘生. 对深冻结井几个关键问题的探讨[J]. 煤炭科学技术,1999,27(1):36-38.
CHEN Xiangsheng. Discussion on several key issues for deep frozen shaft[J]. Coal Science and Technology,1999,27(1):36-38.
|
[2] |
高志宏,胡双平,张晓峰,等. 联络通道富水卵砾石层冻结施工冻结壁温度及变形的模型试验[J]. 西安科技大学学报,2020,40(3):408-416.
GAO Zhihong,HU Shuangping,ZHANG Xiaofeng,et al. Model test of freezing wall temperature and deformation in freezing construction of water-rich gravel layer in connecting passage[J]. Journal of Xi'an University of Science and Technology,2020,40(3):408-416.
|
[3] |
盛天宝,魏世义. 特厚黏土层多圈孔冻结壁温度场实测研究与工程应用[J]. 岩土工程学报,2012,34(8):1516-1521.
SHENG Tianbao,WEI Shiyi. Measurement and engineering application of temperature field multiple-ring hole frozen wall in extra-thick clay strata[J]. Chinese Journal of Geotechnical Engineering,2012,34(8):1516-1521.
|
[4] |
陈军浩,李栋伟. 多圈管冻结温度场特征分析及工程应用[J]. 冰川冻土,2016,38(6):1568-1574.
CHEN Junhao,LI Dongwei. Temperature field frozen with multi-circle pipes in shaft sinking:Feature analysis and engineering application[J]. Journal of Glaciology and Geocryology,2016,38(6):1568-1574.
|
[5] |
焦华喆,孙冠东,陈新明,等. 深厚冲积层多圈孔冻结壁温度场发展研究[J]. 煤炭学报,2018,43(增刊2):443-449.
JIAO Huazhe,SUN Guandong,CHEN Xinming,et al. Development of temperature field of multiple circle freezing wall in deep alluvium[J]. Journal of China Coal Society,2018,43(Sup.2):443-449.
|
[6] |
胡坤,周国庆,荆留杰,等. 深厚表土多圈管冻结温度场演变规律研究[J]. 采矿与安全工程学报,2010,27(2):149-153.
HU Kun,ZHOU Guoqing,JING Liujie,et al. Experimental research on multiple-circle freezing temperature field for thick top soil[J]. Journal of Mining and Safety Engineering,2010,27(2):149-153.
|
[7] |
林斌,王鹏,侯海杰,等. 深厚黏土层多圈管冻结壁温度场发展规律[J]. 煤田地质与勘探,2018,46(4):135-141.
LIN Bin,WANG Peng,HOU Haijie,et al. Development law of the multiple-loop tube freezing temperature field in deep thick clay layer[J]. Coal Geology & Exploration,2018,46(4):135-141.
|
[8] |
李怀鑫,林斌,王鹏. 双圈管冻结壁温度场形成特性及影响因素[J]. 煤田地质与勘探,2020,48(3):169-175.
LI Huaixin,LIN Bin,WANG Peng. Influence factors and formation properties of temperature field in the frozen wall of double ring pipes[J]. Coal Geology & Exploration,2020,48(3):169-175.
|
[9] |
荣传新,尹建辉,王彬,等. 深厚冲积层破损井筒修复过程中的控制冻结技术[J]. 煤炭科学技术,2020,48(1):157-166.
RONG Chuanxin,YIN Jianhui,WANG Bin,et al. Controlled freezing technology for repairing damaged shaft in deep alluvium[J]. Coal Science and Technology,2020,48(1):157-166.
|
[10] |
汪仁和,王伟. 冻结孔偏斜下冻结壁温度场的形成特征与分析[J]. 岩土工程学报,2003,25(6):658-661.
WANG Renhe,WANG Wei. Analysis for features of the freezing temperature field under deflective pipes[J]. Chinese Journal of Geotechnical Engineering,2003,25(6):658-661.
|
[11] |
汪仁和,曹荣斌. 双排管冻结下冻结壁温度场形成特征的数值分析[J]. 冰川冻土,2002,24(2):181-185.
WANG Renhe,CAO Rongbin. Numerical analysis of the temperature field features in the frozen wall with double rows of freezing pipes[J]. Journal of Glaciology and Geocryology,2002,24(2):181-185.
|
[12] |
陈文豹,吴里扬,李功洲,等. 程村主副井深厚冲积层冻结法凿井技术[M]. 北京:煤炭工业出版社,2008.
CHEN Wenbao,WU Liyang,LI Gongzhou,et al. Freezing sinking technology in deep alluvium of Chengcun main and auxiliary shafts[M]. Beijing:Coal Industry Press,2008.
|
[13] |
王磊,陈世官,李祖勇. 软岩冻结凿井井帮稳定性影响因素敏感性分析[J]. 西安科技大学学报,2019,38(1):79-84.
WANG Lei,CHEN Shiguan,LI Zuyong. Sensitivity analysis of influential factors of surrounding rock stability in soft rock freezing sinking[J]. Journal of Xi'an University of Science and Technology,2019,38(1):79-84.
|
[14] |
王千星,杨维好,王衍森. 厚表土斜井冻结凿井期井壁混凝土应变实测研究[J]. 采矿与安全工程学报,2016,33(4):655−661.
WANG Qianxing,YANG Weihao,WANG Yansen. Study on concrete strain of inclined shaft lining in deep alluvium during freezing sinking period[J]. Journal of Mining & Safety Engineering,2016,33(4):655−661.
|
[15] |
程桦,张亮亮,姚直书,等. 厚表土薄基岩钻井井筒突水溃砂次生竖向受压破坏机理研究[J]. 煤炭工程,2020,52(1):1-7.
CHENG Hua,ZHANG Liangliang,YAO Zhishu,et al. Study on the mechanism of secondary vertical compression failure caused by water and sand inrush during shaft boring through thick alluvium and thin bedrock[J]. Coal Engineering,2020,52(1):1-7.
|
[16] |
胡向东,方涛,韩延广. 环形双圈管冻结稳态温度场广义解析解[J]. 煤炭学报,2017,42(9):2287-2294.
HU Xiangdong,FANG Tao,HAN Yanguang. Generalized analytical solution to steady-state temperature field of double-circle-piped freezing[J]. Journal of China Coal Society,2017,42(9):2287-2294.
|
[17] |
胡向东,汪洋. 三排管冻结温度场的势函数叠加法解析解[J]. 岩石力学与工程学报,2012,31(5):1071-1080.
HU Xiangdong,WANG Yang. Analytical solution of three-row-piped frozen temperature field by means of superposition of potential function[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(5):1071-1080.
|
[18] |
马茂艳,程桦,荣传新. 杨村煤矿主井深厚钙质黏土层冻结施工技术[J]. 煤炭工程,2017,49(9):14-18.
MA Maoyan,CHENG Hua,RONG Chuanxin. Freezing construction technology for main shaft of Yangcun coal mine in deep and thick calcareous clay layer[J]. Coal Engineering,2017,49(9):14-18.
|
[19] |
蒲海波. 用X射线衍射分析鉴定黏土矿物的方法[J]. 勘察科学技术,2011(5):12-14.
PU Haibo. Method of identifying clay minerals by X-ray diffraction analysis[J]. Site Investigation Science and Technology,2011(5):12-14.
|
[20] |
田玉新. 淮南矿区厚松散层结构特征及其沉积环境研究[D]. 徐州:中国矿业大学,2014.
TIAN Yuxin. Study on the structural characteristics and sedimentary environment of thick loose layer in Huainan mining area[D]. Xuzhou:China University of Mining and Technology,2014.
|
[21] |
杨青. 热力耦合作用下冻结壁温度场与冻胀力分布规律研究[D]. 淮南:安徽理工大学,2015. YANG Qing. Research on distribution of the temperature field and heaving force in the frozen wall based on thermal-mechanics coupling effect[D]. Huainan:Anhui University of Science and Technology,2015.
|
[22] |
殷宗泽. 土工原理[M]. 北京:中国水利水电出版社,2007.
YIN Zongze. Geotechnical principles[M]. Beijing:China Water Power Press,2007.
|