ZHU Min, NI Wankui, YUAN Kangze, LI Lan, LI Xiangning, WANG Haiman. Improvement and optimization of permeability and strength properties of loess[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(6): 195-200. DOI: 10.3969/j.issn.1001-1986.2020.06.026
Citation: ZHU Min, NI Wankui, YUAN Kangze, LI Lan, LI Xiangning, WANG Haiman. Improvement and optimization of permeability and strength properties of loess[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(6): 195-200. DOI: 10.3969/j.issn.1001-1986.2020.06.026

Improvement and optimization of permeability and strength properties of loess

Funds: 

Key R&D Projects of Shaanxi Province(2019ZDLSF05-07)

More Information
  • Received Date: April 21, 2020
  • Revised Date: September 22, 2020
  • Published Date: December 24, 2020
  • When constructing a sponge city in a collapsible loess region, the reinforcement of the loess roadbed needs to consider the permeability. In order to explore the roadbed fillers with higher strength and impermeability suitable for the construction of sponge city in loess area, this experimental study was performed to investigate the effect of polypropylene fibers in combination with cement and bentonite as a new stabilizer for improving the geotechnical properties of the loess. The Taguchi method was applied to the experiments and a standard L9 Orthogonal Array with four factors(Polypropylene fiber length, Polypropylene fiber content, cement content and bentonite content) and three levels were chosen. A series of unconfined compression and permeability tests were conducted on each specimen. And the signal-to-noise ratio analysis of orthogonal test and Taguchi method had obtained the optimal proportioning scheme for each mixing amount of improved loess. The results of these tests showed:that the most effective material for increasing the unconfined compressive strength of the samples was cement. Polypropylene fiber has the greatest influence on the permeability coefficient of the samples. Taking unconfined compressive strength and permeability coefficient as evaluation indexes, the optimum conditions for curing times of 3 days were Polypropylene fiber length(12 mm)、content(0.3%), cement content(8%) and bentonite content(3%). The optimum conditions test results were also superior in comparison with the lime-loess at 3, 7, and 14 days of curing time. The results of the study provide some reference for the subgrade treatment in sponge city road construction.
  • [1]
    王银梅,高立成. 黄土化学改良试验研究[J]. 工程地质学报,2012,20(6):1071-1077.

    WANG Yinmei,GAO Licheng. Experimental research on chemical improvement of loess[J]. Journal of Engineering Geology,2012,20(6):1071-1077.
    [2]
    张丽萍,张兴昌,孙强. SSA土壤固化剂对黄土击实、抗剪及渗透特性的影响[J]. 农业工程学报,2009,25(7):45-49.

    ZHANG Liping,ZHANG Xingchang,SUN Qiang. Effects of SSA soil stabilizer on compaction,shear strength and permeability characteristics of loess[J]. Transactions of the CSAE,2009,25(7):45-49.
    [3]
    JALIL M S,FARHAD H,RAHMAT-ALLAH B. Stabilizing geotechnical properties of loess soil by mixing recycled polyester fiber and Nano-SiO2[J]. Geotechnical and Geological Engineering,2020,38(2):1151-1163.
    [4]
    MONIRE M,REZA Z M,AFSHIN K. Stress-strain behavior of loess soil stabilized with cement,zeolite,and recycled polyester fiber[J]. Journal of Materials in Civil Engineering,2019,31(12):04019291.1-04019291.10.
    [5]
    ZHANG Youchao,WANG Yihong,ZHAO Nana,et al. Experimental and stress-strain equation investigation on compressive strength of raw and modified soil in loess plateau[J]. Advances in Materials Science and Engineering,2016,2016:1-10.
    [6]
    YANG Bohan,WENG Xingzhong,LIU Junzhong,et al. Strength characteristics of modified polypropylene fiber and cement-reinforced loess[J]. Journal of Central South University,2017,24(3):560-568.
    [7]
    温亮,阎长虹,张政,等. 水泥-粉煤灰-煤渣-吹填粉细砂混合料强度试验[J]. 煤田地质与勘探,2019,47(1):149-154.

    WEN Liang,YAN Changhong,ZHANG Zheng,et al. Test on the strength of the backfill fine sand mixture composed of cement-fly ash-cinder[J]. Coal Geology & Exploration,2019,47(1):149-154.
    [8]
    VARDHAN H,BORDOLOI S,GARG A,et al. Compressive strength analysis of soil reinforced with fiber extracted from water hyacinth[J]. Engineering Computations,2017,34(2):330-342.
    [9]
    刘转年,周安宁,金奇庭. 粘土吸附剂在废水处理中的应用[J]. 环境污染治理技术与设备,2003,4(2):54-58.

    LIU Zhuannian,ZHOU Anning,JIN Qiting. Application of clay adsorbents in wastewater treatment[J]. Techniques and Equipment for Environmental Pollution Control,2003,4(2):54-58.
    [10]
    马学宁,梁波. 水泥改良黄土力学特性试验研究[J]. 岩土工程技术,2005,19(5):241-244.

    MA Xuening,LIANG Bo. Experimental study of mechanical performance of cement-improved loess[J]. Geotechnical Engineering Technique,2005,19(5):241-244.
    [11]
    唐朝生,施斌,蔡奕,等. 聚丙烯纤维加固软土的试验研究[J]. 岩土力学,2007,28(9):1796-1800.

    TANG Chaosheng,SHI Bin,CAI Yi,et al. Experimental study on polypropylene fiber improving soft soils[J]. Rock and Soil Mechanics,2007,28(9):1796-1800.
    [12]
    柴寿喜,石茜. 干密度和含水率对稻草加筋土强度与变形的影响[J]. 煤田地质与勘探,2013,41(1):51-54.

    CHAI Shouxi,SHI Qian. Effect of dry density and water content on the strength and deformation of saline soil reinforced with rice straw[J]. Coal Geology & Exploration,2013,41(1):51-54.
    [13]
    温亚楠,朱鸿鹄,施斌. 纳米膨润土加固黏土强度的试验研究[J]. 地下空间与工程学报,2016,12(增刊1):39-43.

    WEN Yanan,ZHU Honghu,SHI Bin. Experimental study on improving clay strength using Nano-bentonite[J]. Chinese Journal of Underground Space and Engineering,2016,12(Sup.1):39-43.
    [14]
    中华人民共和国交通运输部. 黄土地区公路路基设计与施工技术规范:JTG/T D31-05-2017[S]. 北京:人民交通出版社,2017. Ministry of Transport of the People's Republic of China. Technical specifications for design and construction of highway subgrade in Loess Area:JTG/T D31-05-2017[S]. Beijing:China Communications Press,2017.
    [15]
    NALBANT M,GöKKAYA H,SUR G. Application of taguchi method in the optimization of cutting parameters for surface roughness in turning[J]. Materials and Design,2007,28(4):1379-1385.
    [16]
    OTTO K N,ANTONSSON E K. Extensions to the Taguchi method of product design[J]. Journal of Mechanical Design,1993,115(1):5-13.
    [17]
    常志璐,裴向军,吴梦秋,等. 植物纤维加筋固化土抗压强度和渗透试验研究[J]. 工程地质学报,2017,25(4):912-919.

    CHANG Zhilu,PEI Xiangjun,WU Mengqiu,et al. Experimental study on compressive strength and permeability of soil solidified with coconut-fiber and double polyethylene material[J]. Journal of Engineering Geology,2017,25(4):912-919.
    [18]
    陶高梁,吴小康,杨秀华,等. 水泥土的孔隙分布及其对渗透性的影响[J]. 工程地质学报,2018,26(5):1243-1249.

    TAO Gaoliang,WU Xiaokang,YANG Xiuhua,et al. Pore distribution of cement-soil and its effect on permeability[J]. Journal of Engineering Geology,2018,26(5):1243-1249.
    [19]
    王泽东,周盛涛,方文,等. 膨润土改性水泥土力学特性试验研究[J]. 硅酸盐通报,2019,38(10):3287-3292.

    WANG Zedong,ZHOU Shengtao,FANG Wen,et al. Experimental study on mechanical properties of cement soil modified by bentonite[J]. Bulletin of the Chinese Ceramic Society,2019,38(10):3287-3292.
    [20]
    韩晓雷,郅彬,郭志勇. 灰土强度影响因素研究[J]. 岩土工程学报,2002,24(5):667-669.

    HAN Xiaolei,ZHI Bin,GUO Zhiyong. Research on the principal factors in strength of the lime-loess[J]. Chinese Journal of Geotechnical Engineering,2002,24(5):667-669.
  • Cited by

    Periodical cited type(17)

    1. 李昊,李叶繁,魏长婧,王磊杰,康利军,姜川. 基于SBAS-InSAR技术的登封市潜在地质灾害识别研究. 河南科学. 2024(08): 1170-1178 .
    2. 汪晨星,史凌亚,李瑞东. 基于Stacking-InSAR的煤矿沉降监测与综采面参数反演. 陕西煤炭. 2024(10): 14-20 .
    3. 张学辉,崔振东,张中俭,赵磊磊,魏涛,刘东旭,王龙灿. 基于SBAS-InSAR技术的新疆某煤矿长时序地表形变监测与分析. 新疆地质. 2024(03): 459-465 .
    4. 姜川,王磊杰,樊高强,李昊,李叶繁,苑雨,张曦. 基于SBAS-InSAR的郑州煤炭矿区地表沉降监测及演化规律分析. 中国煤炭. 2024(10): 158-165 .
    5. 任瑶瑶,刘国林,牛冲,韩宇,周一鸣. 基于MSBAS InSAR技术的沧州市地表形变监测与分析. 地球物理学进展. 2023(02): 588-599 .
    6. 孙晓云. 基于InSAR和微震技术矿区非法开采事件监测技术探讨和应用. 内蒙古煤炭经济. 2023(03): 113-117 .
    7. 于冰,胡云亮,刘国祥,罗小军,胡金龙. 时序InSAR反演唐山市二维地表形变时间序列. 测绘科学. 2023(06): 82-94+230 .
    8. 孙军,张锦. 基于SBAS-InSAR和偏移追踪技术的露天煤矿地面形变监测. 煤矿安全. 2022(03): 162-169 .
    9. 陈宗玥. 基于图像识别的大型建筑钢结构形变监测研究. 测绘技术装备. 2022(01): 17-21 .
    10. 高宏伟,史先琳,陈晨,尹勇,戴可人. 云南漾濞地震地表二维形变提取. 昆明理工大学学报(自然科学版). 2022(02): 57-64 .
    11. 王凤云,陶秋香,陈洋,韩宇,郭在洁. 基于InSAR的煤矿采空区地表形变监测与预警. 煤矿安全. 2022(06): 195-203 .
    12. 贺黎明,裴攀科,吴立新,张香凝. 基于时序InSAR的矿区滑坡前地表运动特征分析. 东北大学学报(自然科学版). 2022(09): 1314-1321+1368 .
    13. 胡华宗. 基于无人机遥感技术的矿井地面塌陷综合监测. 能源与环保. 2022(09): 85-89 .
    14. 刘健,周皓,张恩正. 基于机器学习的煤矿开采沉陷自动化监测系统. 信息技术. 2022(11): 143-148+154 .
    15. 白洁. 基于机器视觉的测绘工程地面位移形变测量方法. 经纬天地. 2021(02): 93-97 .
    16. 姚鑫,吴付英. 基于GIS技术的矿区开采沉陷形变监测系统设计. 矿产与地质. 2021(03): 549-553+573 .
    17. 高文,王华,侯凌志. 矿山地质灾害监测方法与自动化监测预警系统应用. 西部资源. 2020(06): 66-68 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (207) PDF downloads (13) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return