Citation: | CHEN Bo, TANG Dazhen, LIN Wenji, LI Song, ZHONG Guanghao, ZHU Xueguang. Geological modeling-based productivity response characteristics of the CBM well in Baode unitⅠ[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(5): 53-63. DOI: 10.3969/j.issn.1001-1986.2020.05.007 |
[1] |
LIU Yanfei,TANG Dazhen,LI Song,et al. Productivity subarea of CBM field and its key controlling factors:A case study in the Hancheng pilot test area,southeastern Ordos basin,China[J]. Energy Exploration & Exploitation,2019(1):102-124.
|
[2] |
王绪性,王杏尊,郭布民,等. 鄂尔多斯盆地东部深部煤层气井压裂工艺及实践[J]. 煤田地质与勘探,2019,47(1):92-95.
WANG Xuxing,WANG Xingzun,GUO Bumin. et al. Technology and practice for deep CBM fracturing in eastern Ordos basin[J]. Coal Geology & Exploration,2019,47(1):92-95.
|
[3] |
付玉通,桑树勋,崔彬,等. 延川南区块深部煤层气U型分段压裂水平井地质适用性研究[J]. 煤田地质与勘探,2018,46(5):146-152.
FU Yutong,SANG Shuxun,CUI Bin,et al. Geological adaptability of deep CBM U-shaped staged fracturing horizontal well in the south block of Yanchuan[J]. Coal Geology & Exploration,2018,46(5):146-152.
|
[4] |
陶树,汤达祯,许浩,等. 沁南煤层气井产能影响因素分析及开发建议[J]. 煤炭学报,2011,36(2):194-198.
TAO Shu,TANG Dazhen,XU Hao,et al. Analysis on influence factors of coalbed methane wells productivity and development proposals in southern Qinshui basin[J]. Journal of China Coal Society,2011,36(2):194-198.
|
[5] |
原俊红,曹丽文,付玉通. 延川南地区深部煤层气U型水平井压裂参数优化设计[J]. 煤田地质与勘探,2018,46(5):175-181.
YUAN Junhong,CAO Liwen,FU Yutong. Optimal design of the parameters of U-shaped horizontal well for deep coalbed methane in southern Yanchuan[J]. Coal Geology & Exploration,2018,46(5):175-181.
|
[6] |
ZHAO Junlong,TANG Dazhen,XU Hao,et al. High production indexes and the key factors in coalbed methane production:A case in the Hancheng block,southeastern Ordos basin,China[J]. Journal of Petroleum Science and Engineering,2015,130:55-67.
|
[7] |
赵欣. 煤层气产能主控因素及开发动态特征研究[D]. 北京:中国矿业大学(北京),2017.
ZHAO Xin. The study of main influence factors on productivity of coalbed methane well and the development performance[D]. Beijing:China University of Mining and Technology(Beijing),2017.
|
[8] |
彭龙仕,乔兰,龚敏,等. 煤层气井多层合采产能影响因素[J]. 煤炭学报,2014,39(10):2060-2067.
PENG Longshi,QIAO Lan,GONG Min,et al. Factors affecting the production performance of coalbed methane wells with multiple-zone[J]. Journal of China Coal Society,2014,39(10):2060-2067.
|
[9] |
ZU Xiaofang,HOU Weisheng,ZHANG Baoyi,et al. Overview of three-dimensional geological modeling technology[J]. IERI Procedia,2012,2:921-927.
|
[10] |
FALIVENE O,CABRERA L,SÁEZ A. Forecasting coal resources and reserves in heterogeneous coal zones using 3D facies models(As Pontes basin,NW Spain)[J]. International Journal of Coal Geology,2014,130:8-26.
|
[11] |
尹欢. 三维地质模型的建立-以青西凹陷窟窿山地区为例[D]. 武汉:长江大学,2016. YIN Huan. Three-dimensional gaological model in Kulong area,Qingxi sag[D]. Wuhan:Yangtze University,2016.
|
[12] |
JISKANI I M, SIDDIQUI F I, PATHAN A G. Integrated 3D geological modeling of Sonda-Jherruck coal field,Pakistan[J]. Journal of Sustainable Mining,2018,17(3):111-119.
|
[13] |
黄承义,苏培东,王十铺,等. 保德区块B1井区局部构造对压裂施工及排采的影响分析[J]. 煤矿安全,2018,49(11):1-5.
HUANG Chengyi,SU Peidong,WANG Shipu,et al. Influence analysis of local structure of B1 well block on fracturing operation and CBM drainage in Baode area[J]. Safety in Coal Mines,2018,49(11):1-5.
|
[14] |
安世岗,吴联君,向军文. 山西保德中低阶煤层气地质特征[J]. 能源与环保,2018,40(3):60-65.
AN Shigang,WU Lianjun,XIANG Junwen. Geological characteristics of middle and low rank coalbed methane in Baode County of Shanxi Province[J]. China Energy and Environmental Protection,2018,40(3):60-65.
|
[15] |
田文广,汤达祯,王志丽,等. 鄂尔多斯盆地东北缘保德地区煤层气成因[J]. 高校地质学报,2012,18(3):479-484.
TIAN Wenguang,TANG Dazhen,WANG Zhili,et al. Origin of coalbed methane in Baode,northeastern Ordos basin[J]. Geological Journal of China Universities,2012,18(3):479-484.
|
[16] |
淮银超,张铭,杨龙伟,等. 基于相控的煤层气藏三维地质建模[J]. 地球科学与环境学报,2017,39(2):275-285.
HUAI Yinchao,ZHANG Ming,YANG Longwei,et al. Facies-controlled three-dimensional geological modeling for coalbed methane reservoir[J]. Journal of Earth Sciences and Environment,2017,39(2):275-285.
|
[17] |
刘玲. 鄂尔多斯盆地姬塬油田罗1井区长81储层地质建模研究[D]. 北京:中国地质大学(北京),2010. LIU Ling. The study of geological modeling of Chang-81 reservoir in Luo 1 area,Jiyuan oilfield,Ordos basin[D]. Beijing:China University of Geosciences(Beijing),2010.
|
[18] |
陈博,汤达祯,张玉攀,等. 韩城矿区H3井组煤体结构测井反演及三维地质建模[J]. 煤炭科学技术,2019,47(7):88-94.
CHEN Bo,TANG Dazhen,ZHANG Yupan,et al. Logging inversion and three-dimensional geological modeling of coal structure in Hancheng H3 well group[J]. Coal Science and Technology,2019,47(7):88-94.
|
[19] |
吴涛,付斌. 多点地质统计学在苏里格气田地质建模的应用[J]. 地质与勘探,2016,52(5):985-991 WU Tao,FU Bin. Application of muliple-point method to geological modeling in the Sulige gas field[J]. Geology and Exploration,2016,52(5):985-991.
|
[20] |
LI Feng,WANG Wenhe,XU Jiang,et al. Comparative study on vulnerability assessment for urban buried gas pipeline network based on SVM and ANN methods[J]. Process Safety and Environmental Protection,2019,122:23-32.
|
[21] |
SHI Bibo,LIU Jundong. Nonlinear metric learning for kNN and SVMs through geometric transformations[J]. Neurocomputing,2018,318:18-29.
|
[22] |
关文政. 基于支持向量机的煤储层参数测井评价方法研究[D]. 武汉:长江大学,2016.
GUAN Wenzheng. Study on methods of parameters analysis of coalbed mathane by SVM with logging data[D]. Wuhan:Yangtze University,2016.
|
[23] |
姚海鹏,吕伟波,王凯峰,等. 巨厚低阶煤煤层气储层关键成藏地质要素及评价方法:以二连盆地巴彦花凹陷为例[J]. 煤田地质与勘探,2020,48(1):85-95.
YAO Haipeng,LYU Weibo,WANG Kaifeng,et al. Key geological factors and evaluation methods for huge low-rank coalbed methane reservoirs:Taking Bayanhua depression in Erlian basin as an example[J]. Coal Geology & Exploration,2020,48(1):85-95.
|
[24] |
LI Junqian,LIU Dameng,YAO Yanbin,et al. Evaluation of the reservoir permeability of anthracite coals by geophysical logging data[J]. International Journal of Coal Geology,2011,87(2):121-127.
|
[25] |
TAO Shu,PAN Zhejun,CHEN Shida,et al. Coal seam porosity and fracture heterogeneity of marcolithotypes in the Fanzhuang block,southern Qinshui basin,China[J]. Journal of Natural Gas Science and Engineering,2019,66:148-158.
|
[26] |
LI Song,TANG Dazhen,PAN Zhejun,et al. Characterization of the stress sensitivity of pores for different rank coals by nuclear magnetic resonance[J]. Fuel,2013,111:746-754.
|
[27] |
黄兆辉. 高阶煤层气储层测井评价方法及其关键问题研究[D]. 北京:中国地质大学(北京),2014.
HUANG Zhaohui. Research on log evaluation of high rank coalbed mathane reservoirs and some key issues[D]. Beijing:China University of Geosciences(Beijing),2014.
|
[28] |
许小凯. 煤层气直井排采中煤储层应力敏感性及其压降传播规律[D]. 北京:中国矿业大学(北京),2016.
XU Xiaokai. Stress sensitivity and pressure drop propagation law of coal reservoir during drainage process of CBM vertical well[D]. Beijing:China University of Mining and Technology(Beijing),2016.
|
[29] |
陈云涛. 胡底区块煤储层条件对煤层气井产能影响分析[J]. 中国煤层气,2018,15(4):14-17.
CHEN Yuntao. Influence analysis of coal reservoir conditions on CBM well's productivity in Hudi block[J]. China Coalbed Methane,2018,15(4):14-17.
|
[30] |
侯俊胜. 煤层气储层测井评价方法及其应用[M]. 北京:冶金工业出版社,2010.
HOU Junsheng. Logging evaluation method of CBM reservoir and its application[M]. Beijing:Metallurgical Industry Press,2010.
|
[31] |
LIU Longlong,ZHANG Jinliang,SUN Zhongqiang,et al. Constraints of three-dimensional geological modeling on reservoir connectivity:A case study of the Huizhou depression,Pearl River Mouth basin,South China Sea[J]. Journal of Asian Earth Sciences,2019,171:144-161.
|