Citation: | MENG Hui, LI Jian, LEI Dongji, WANG Yajuan. Experimental study on the frequency dispersion response of composite electrical properties of coal[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 226-232. DOI: 10.3969/j.issn.1001-1986.2020.04.031 |
[1] |
张文涛,吕品,孙晓梅,等. 张集矿综采工作面瓦斯治理措施及效果分析[J]. 中国安全生产科学技术,2014,10(1):103-108.
ZHANG Wentao,LYU Pin,SUN Xiaomei,et al. Study on gas control measures and effect analysis in mechanized mining face of Zhangji coal mine[J]. Journal of Safety Science and Technology,2014,10(1):103-108.
|
[2] |
么玉鹏,姜波,李明,等. 构造煤裂隙及渗流孔隙分形特征研究[J]. 煤矿安全,2016,47(8):5-8.
ME Yupeng,JIANG Bo,LI Ming,et al. Study on fracture and seepage pore fractal characteristics of tectonic coal[J]. Safety in Coal Mines,2016,47(8):5-8.
|
[3] |
潘结南,张召召,李猛,等. 煤的多尺度孔隙结构特征及其对渗透率的影响[J]. 天然气工业,2019,39(1):64-73.
PAN Jienan,ZHANG Zhaozhao,LI Meng,et al. Characteristics of multi-scale pore structure of coal and its influence on permeability[J]. Natural Gas Industry,2019,39(1):64-73.
|
[4] |
王登科,吕瑞环,彭明,等.含瓦斯煤渗透率各向异性研究[J].煤炭学报,2018,43(4):1008-1015.
WANG Dengke,LYU Ruihuan,PENG Ming,et al. Experimental study on anisotropic permeability rule of coal bearing methane[J]. Journal of China Coal Society,2018,43(4):1008-1015.
|
[5] |
牛丽飞,曹运兴,石玢,等. 潞安矿区煤层渗透率的各向异性特征实验研究[J]. 中国安全生产科学技术,2019,15(9):82-87.
NIU Lifei,CAO Yunxing,SHI Fen,et al. Experimental study on anisotropic characteristics of coal seam permeability in Lu'an mining area[J]. Journal of Safety Science and Technology,2019,15(9):82-87.
|
[6] |
梁霄,周明顺,艾林,等. 煤储层渗透性核磁实验分析及测井评价[J]. 能源与环保,2017,39(2):65-69.
LIANG Xiao,ZHOU Mingshun,AI Lin,et al. Nuclear magnetic resonance experimental analysis of coal reservoir permeability and well logging evaluation[J]. China Energy and Environmental Protection,2017,39(2):65-69.
|
[7] |
ZHENG Sijian,YAO Yanbin,LIU Dameng,et al. Characterizations of full-scale pore size distribution,porosity and permeability of coals:A novel methodology by nuclear magnetic resonance and fractal analysis theory[J]. International Journal of Coal Geology,2018,196:148-158.
|
[8] |
陈序三,赵文杰,朱留方. 复电阻率测井方法及其应用[J]. 测井技术,2001,25(5):327-331.
CHEN Xusan,ZHAO Wenjie,ZHU Liufang. Complex resistivity logging and its applications[J]. Logging Technology,2001,25(5):327-331.
|
[9] |
KRUSCHWITZ S,YARAMANCI U. Detection and characterization of the disturbed rock zone in claystone with the complex resistivity method[J]. Journal of Applied Geophysics,2004,57(1):63-79.
|
[10] |
孙斌,唐新功,向葵,等. 高温高压条件下泥质砂岩复电阻率测试与分析[J]. 工程地球物理学报,2016,13(3):277-284.
SUN Bin,TANG Xingong,XIANG Kui,et al. Measurement and analysis of complex resistivity of argillaceous sandstone under high temperature and pressure[J]. Journal of Engineering Geophysics,2016,13(3):277-284.
|
[11] |
窦春霞. 龙马溪组页岩岩石物理测试与激发极化特性研究[D]. 荆州:长江大学,2016.
DOU Chunxia. Physical test and induced polarization characteristics of Longmaxi shale[D]. Jingzhou:Yangtze University,2016.
|
[12] |
田刚,唐新功,向葵,等. 高压条件下含导电矿物的人工砂岩复电阻率研究[J]. 煤田地质与勘探,2019,47(2):183-188.
TIAN Gang,TANG Xingong,XIANG Kui,et al. Study on complex resistivity of artificial sandstone containing conductive mineral under high pressure[J]. Coal Geology & Exploration,2019,47(2):183-188.
|
[13] |
池美瑶. 高温高压状态下致密岩石物性参数测试与分析[D]. 武汉:长江大学,2019.
CHI Meiyao. Test and analysis of physical parameters of dense rock under high temperature and high pressure[D]. Wuhan:Yangtze University,2019.
|
[14] |
HALL S H,OLHOEFT G R. Nonlinear complex resistivity of some nickel sulphies from western Australia[J]. Geophysical Prospecting,2010,34(8):1255-1276.
|
[15] |
安珊,李能根. 含水岩石复电阻率的实验研究[J]. 测井技术,1998,22(5):315-317.
AN Shan,LI Nenggen. An investigation on multi-resistivity of aqueous rock[J]. Logging Technology,1998,22(5):315-317.
|
[16] |
程辉,底青云,李帝铨. 频率信号激励下岩石电性参数研究[J]. 地球物理学进展,2010,25(3):918-925.
CHENG Hui,DI Qingyun,LI Diquan. The discussion electrical properties of rocks base on frequency response characteristics[J]. Progress in Geophysics,2010,25(3):918-925.
|
[17] |
范宜仁,陆介明,王光海,等. 岩石电阻率频散现象的实验研究[J]. 中国石油大学学报(自然科学版),1994,18(1):17-23.
FAN Yiren,LU Jieming,WANG Guanghai,et al. Experimental study on rock resistivity dispersion phenomenon[J]. Journal of the University of Petroleum,China,1994,18(1):17-23.
|
[18] |
柯式镇. 岩石电学参数扫频测量[J]. 地球物理学进展,2010,25(2):512-515.
KE Shizhen. Frequency-swept measurement of electrical parameters of rock[J]. Progress in Geophysics,2010,25(2):512-515.
|
[19] |
柯式镇,冯启宁,何亿成,等. 电极法复电阻率测井研究[J]. 石油学报,2006,27(2):89-92.
KE Shizhen,FENG Qining,HE Yicheng,et al. Study on complex resistivity well logging with electrode antenna[J]. Acta Petrolei Sinica,2006,27(2):89-92.
|
[20] |
SHIN S W,PARK S G,SHIN D B. Spectral-induced polarization characteristics of rock types from the skarn deposit in Gagok Mine,Taebaeksan basin,South Korea[J]. Environmental Earth Sciences,2015,73(12):8325-8331.
|
[21] |
WAIT J R. A phenomenological theory of overvoltage for metallic particles[J]. Overvoltage Research and Geophysical Applications,1959(4):22-28.
|
[22] |
DIAS C A. Developments in a model to describe low-frequency electrical polarization of rocks[J]. Geophysics,2000,65(2):437-451.
|
[23] |
PELTON W H,WARD S H,HALLOF P G,et al. Mineral discrimination and removal of inductive coupling with multifrequency IP[J]. Geophysics,1978,43(3):588-609.
|
[24] |
张平松,刘盛东,吴荣新,等. 采煤面覆岩变形与破坏立体电法动态测试[J]. 岩石力学与工程学报,2009,28(9):1870-1875.
ZHANG Pingsong,LIU Shengdong,WU Rongxin,et al. Dynamic detection of overburden deformation and failure in mining workface 3D resistivity method[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1870-1875.
|
[25] |
王勃,刘盛东,张朋. 采用网络并行电法仪进行煤矿底板动态监测[J]. 中国煤炭地质,2009,21(3):53-57.
WANG Bo,LIU Shengdong,ZHANG Peng. Application of network parallel electrical instrument on dynamic coal floor monitoring[J],Coal Geology of China,2009,21(3):53-57.
|
[26] |
刘盛东,王勃,周冠群,等. 基于地下水渗流中地电场响应的矿井水害预警试验研究[J]. 岩石力学与工程学报,2009,28(2):267-272.
LIU Shengdong,WANG Bo,ZHOU Guanqun,et al. Experimental research on mine floor water hazard early warning based on response of geoelectric field in groundwater seepage[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):267-272.
|
1. |
郭洋洋. 论一种实现煤矿地质测量信息透明化的方法. 内蒙古煤炭经济. 2025(03): 47-49 .
![]() | |
2. |
何文斌. 煤矿巷道三维激光扫描测量精度研究. 内蒙古煤炭经济. 2025(04): 25-27 .
![]() | |
3. |
陈晓伟,陈雷,李猛,胡成军,宋磊,袁鹏喆. 一种长巷道形变监测中轴线提取及断面构建方法. 工矿自动化. 2024(02): 35-41 .
![]() | |
4. |
鞠哲. 综采工作面三维防爆巡检机器人设计及试验. 煤矿机械. 2024(04): 8-10 .
![]() | |
5. |
王嘉伟,王海军,吴汉宁,吴艳,韩珂,程鑫,董敏涛. 基于三维地质建模技术的煤矿隐蔽致灾因素透明化研究. 工矿自动化. 2024(03): 71-81+121 .
![]() | |
6. |
汪卫兵,侯学谦,赵栓峰,贺海涛,邢志中,路正雄. 基于残差优化的综采工作面煤壁点云补全方法. 工矿自动化. 2024(06): 120-128 .
![]() | |
7. |
贾建龙,王志鹏,赵耀斌,刘飞,贾明超,高子龙,呼雨,陈利剑. 智能化矿用喷浆机器人研究及应用. 中国煤炭. 2024(07): 91-96 .
![]() | |
8. |
薛旭升,杨星云,岳佳宁,王川伟,毛清华,马宏伟,王荣泉. 煤矿巷道空间毫米波雷达测量特性与重建方法. 煤田地质与勘探. 2024(10): 186-194 .
![]() | |
9. |
林舒萍,宋晓,张铃. 基于三维激光扫描技术的智能制造生产线目标检测研究. 激光杂志. 2024(10): 227-231 .
![]() | |
10. |
徐鑫乾,李海涛,吴雪,李成,王红星,王海楠. 基于云模型的激光点云数据快速计算算法. 自动化技术与应用. 2024(11): 107-110 .
![]() | |
11. |
刘敬东,李旭,郑志强,苟丙荣,韩维新,巩泽文. 激光SALM技术在煤矿巷道形变监测与支护中的应用. 矿山机械. 2024(12): 52-57 .
![]() | |
12. |
袁林山,崔周烽,许长辉,薛松超. 典型地下空间穿戴式三维激光扫描精度分析. 导航定位学报. 2024(06): 76-83 .
![]() | |
13. |
贾建称,贾茜,桑向阳,吴艳. 我国煤矿地质保障系统建设30年:回顾与展望. 煤田地质与勘探. 2023(01): 86-106 .
![]() | |
14. |
景宁波,马宪民,郭卫,秦学斌. 改进动态半径的矿井激光雷达点云滤波算法. 西安科技大学学报. 2023(02): 406-413 .
![]() | |
15. |
常巧梅,杨静,阎跃观. 基于三维激光扫描技术的巷道变形测量方法. 煤炭技术. 2023(06): 30-32 .
![]() | |
16. |
顾海荣,罗佳,高子渝,杨文娟,韩帅. 基于深度相机的大直径救援井三维模型重建研究. 煤田地质与勘探. 2023(05): 188-197 .
![]() | |
17. |
戴文祥,陈雷,闫鹏飞,王利欣,李波,袁鹏喆. 基于三维激光扫描的煤矿巷道形变监测方法. 工矿自动化. 2023(10): 61-67+95 .
![]() | |
18. |
董兴旺. 从智能化共性问题看柳林煤矿智能化未来发展方向. 山西煤炭. 2022(02): 95-99 .
![]() | |
19. |
杨洪涛,于印,许吉禅,沈梅,陆广慧. 基于线扫描原理的煤矿巷道变形测量系统. 工矿自动化. 2022(07): 113-117+148 .
![]() | |
20. |
李梅,康济童,刘晖,李兆阳,刘曦,朱青,肖彬虎. 基于BIM与GIS的矿山巷道参数化三维建模技术研究. 煤炭科学技术. 2022(07): 25-35 .
![]() | |
21. |
亓玉浩,关士远. 基于激光SLAM的综采工作面实时三维建图方法. 工矿自动化. 2022(11): 139-144 .
![]() | |
22. |
俞艳波,李小松,苏海华,李琦,卢进宏. 便携式三维激光扫描技术在矿山地下巷道可视化建模中的应用. 北京测绘. 2022(12): 1702-1707 .
![]() |