SUN Xueyang, ZHANG Qi, LI Cheng, ZHANG Lei. Overburden failure simulation under double coal seams mining in a coal mine in north Shaanxi Province[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 183-189. DOI: 10.3969/j.issn.1001-1986.2020.04.025
Citation: SUN Xueyang, ZHANG Qi, LI Cheng, ZHANG Lei. Overburden failure simulation under double coal seams mining in a coal mine in north Shaanxi Province[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 183-189. DOI: 10.3969/j.issn.1001-1986.2020.04.025

Overburden failure simulation under double coal seams mining in a coal mine in north Shaanxi Province

Funds: 

National Natural Science Foundation of China(41272388, 40572155)

More Information
  • Received Date: October 27, 2019
  • Revised Date: June 22, 2020
  • Published Date: August 24, 2020
  • Under the conditions of multi-seam mining, the overburden failure of coal seams has unique characteristics, which affects the mine production arrangement. Taking a mine in northern Shaanxi Province as an example, based on the geological and mining conditions of the mine, the influence of double-seam mining on overburden rock damage was analyzed by using the method of similar material simulation experiment and numerical simulation. The results show that the height of the caving zone and the height of the fractured zone in the overburden of coal seam obtained by using similar material simulation and numerical simulation with different widths of coal pillars were basically the same. In the double-seam mining, the larger the width of the coal pillar is, the smaller the superposition area of the two coal seams is, and the smaller the degree of damage to overburden is. In the arrangement of working face, it is suggested to increase the mining distance between two coal seams and increase the width of coal pillar as far as possible, so as to slow down the damage scope and the extent of overburden movement.
  • [1]
    汤伏全,黄韩,孙学阳,等. 黄土沟壑区开采沉陷对地形因子的影响研究[J]. 干旱区资源与环境,2016,30(5):124-128.

    TANG Fuquan,HUANG Han,SUN Xueyang,et al. The influence of mining subsidence on terrain factors in gully region of loess[J]. Journal of Arid Land Resources and Environment,2016,30(5):124-128.
    [2]
    刘秀英,张永波. 采空区覆岩移动规律的相似模拟实验研究[J]. 太原理工大学学报,2004,35(1):29-31.

    LIU Xiuying,ZHANG Yongbo. Simulating experiment research on the law of movement of the mined rock[J]. Journal of Taiyuan University of Technology,2004,35(1):29-31.
    [3]
    王创业,司建锋,杜小雅,等. 基于相似模拟实验覆岩移动规律研究[J]. 煤炭技术,2017,36(1):61-63.

    WANG Chuangye,SI Jianfeng,DU Xiaoya,et al. Research on strata movement law based on similar simulation test[J]. Coal Technology,2017,36(1):61-63.
    [4]
    王永国,王明,许蓬. 巴彦高勒煤矿3-1 煤层顶板垮落裂缝带发育特征[J]. 煤田地质与勘探,2019,47(增刊1):37-42.

    WANG Yongguo,WANG Ming,XU Peng. Characteristics of collapsed fractured zone development of No.3-1 seam roof in Bayangaole coal mine[J]. Coal Geology & Exploration,2019,47(Sup.1):37-42.
    [5]
    孙学阳,杨旭,李鹏强,等. 煤系地层与滑坡倾向相同条件下开采对滑坡扰动的影响[J]. 煤矿安全,2016,47(10):36-39.

    SUN Xueyang,YANG Xu,LI Pengqiang,et al. Influence of mining on landslide disturbance under the same inclination of coal measure strata and landslide[J]. Safety in Coal Mines,2016,47(10):36-39.
    [6]
    张培河,张齐,孙学阳,等. 煤炭开采覆岩移动导水裂隙带发育高度相似材料模拟实验研究[J]. 中国煤炭地质,2019,31(10):49-52.

    ZHANG Peihe,ZHANG Qi,SUN Xueyang,et al. Similar material simulation experimental study on overburden movement caused water conducted zone height in coal mining[J]. Coal Geology of China,2019,31(10):49-52.
    [7]
    钱鸣高,石平五,许家林. 矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社,2010:184-185.

    QIAN Minggao,SHI Pingwu,XU Jialin. Mine pressure and strata control[M]. Xuzhou:China University of Mining and Technology Press,2010:184-185.
    [8]
    钱鸣高,缪协兴,许家林,等. 岩层控制的关键层理论[M]. 徐州:中国矿业大学出版社,2003:10.

    QIAN Minggao,MIAO Xiexing,XU Jialin,et al. Key layer theory of strata control[M]. Xuzhou:China University of Mining and Technology Press,2003:10.
    [9]
    郭文彬,刘俊. 富水厚砂层下二分层综采导水裂隙带探测研究[J]. 煤炭工程,2014,46(12):60-62.

    GUO Wenbin,LIU Jun. Study on detection of water flow cracking zone in fully mechanized coal mining face in second slicing seam under watery thick sand stratum[J]. Coal Engineering,2014,46(12):60-62.
    [10]
    张志祥,张永波,赵雪花,等. 双煤层采动岩体裂隙分形特征实验研究[J]. 太原理工大学学报,2014,45(3):403-407.

    ZHANG Zhixiang,ZHANG Yongbo,ZHAO Xuehua,et al. Experimental study on fractal characteristics of fractures in two-coal seam mining rock mass[J]. Journal of Taiyuan University of Technology,2014,45(3):403-407.
    [11]
    李智学,申小龙,李明培,等. 榆神矿区最上可采煤层赋存规律及开采危害程度[J]. 煤田地质与勘探,2019,47(3):130-139.

    LI Zhixue,SHEN Xiaolong,LI Mingpei,et al. Occurrence regularity of uppermost minable coal seams and their harmful level of mining in Yushen mining area[J]. Coal Geology & Exploration,2019,47(3):130-139.
    [12]
    陈鑫. 杭来湾煤矿导水裂隙带发育高度数值模拟研究[J]. 中国煤炭,2019,45(3):55-59.

    CHEN Xin. Study on numerical simulation of development height of water-conducting fracture zone in Hanglaiwan mine[J]. China Coal,2019,45(3):55-59.
    [13]
    潘瑞凯,曹树刚,李勇,等. 浅埋近距离双厚煤层开采覆岩裂隙发育规律[J]. 煤炭学报,2018,43(8):2261-2268.

    PAN Ruikai,CAO Shugang,LI Yong,et al. Development of overburden fractures for shallow double thick seams mining[J]. Journal of China Coal Society,2018,43(8):2261-2268.
    [14]
    姜福兴,姚顺利,魏全德,等. 重复采动引发矿震的机理探讨及灾害控制[J]. 采矿与安全工程学报, 2015,32(3):349-355.

    JIANG Fuxing,YAO Shunli,WEI Quande,et al. Tremor mechanism and disaster control during repeated mining[J]. Journal of Mining & Safety Engineering,2015,32(3):349-355.
    [15]
    李树清,何学秋,李绍泉,等. 煤层群双重卸压开采覆岩移动及裂隙动态演化的实验研究[J]. 煤炭学报,2013,38(12):2146-2152.

    LI Shuqing,HE Xueqiu,LI Shaoquan,et al. Experimental research on strata movement and fracture dynamic evolution of double pressure-relief mining in coal seams group[J]. Journal of China Coal Society,2013,38(12):2146-2152.
    [16]
    李树刚,丁洋,安朝峰,等. 近距离煤层重复采动覆岩裂隙形态及其演化规律实验研究[J]. 采矿与安全工程学报,2016,33(5):904-910.

    LI Shugang,DING Yang,AN Zhaofeng,et al. Experimental research on the shape and dynamic evolution of repeated mining-induced fractures in short-distance coal seams[J]. Journal of Mining & Safety Engineering,2016,33(5):904-910.
    [17]
    曹晓毅,刘小平,田延哲. 煤层重复采动对水渠稳定性及渗漏性影响评价[J]. 煤田地质与勘探,2018,46(4):93-98.

    CAO Xiaoyi,LIU Xiaoping,TIAN Yanzhe. Evaluation on influence of repeated coal mining on the stability and leakage of irrigation canal[J]. Coal Geology & Exploration,2018,46(4):93-98.
    [18]
    武谋达. 彬长矿区复合煤层联合开采区涌水特征[J]. 煤田地质与勘探,2019,47(1):133-137.

    WU Mouda. Analysis on water burst characteristics during united mining of multiple coal seams in Binchang mining area[J]. Coal Geology & Exploration,2019,47(1):133-137.
    [19]
    孙学阳. 简单地质-开采条件下的采煤沉陷预测程序设计[D]. 西安:西安科技大学,2005. SUN Xueyang. Programming on prediction of coal-mining-induced subsidence under simple geological-mining conditions[D]. Xi'an:Xi'an University of Science and Technology,2005.
    [20]
    汤伏全. 试验模型变形测量数码照相装置研究[J]. 测绘通报,2012(3):36-39.

    TANG Fuquan. Study of digital photographic device to observe deformation for test model[J]. Bulletin of Surveying and Mapping,2012(3):36-39.
    [21]
    侯恩科,从通,谢晓深,等. 基于颗粒流的浅埋双煤层斜交开采地表裂缝发育特征[J]. 采矿与岩层控制工程学报,2020,2(1):20-28.

    HOU Enke,CONG Tong,XIE Xiaoshen,et al. Ground surface fracture development characteristics of shallow double coal seam staggered mining based on particle flow[J]. Journal of Mining and Strata Control Engineering,2020,2(1):20-28.
  • Related Articles

    [1]GAN Zhihui, SHANG Hui, DU Rongjun, ZHAN Huizhu. Mining subsidence analysis of gently inclined coal seams based on FLAC3D and DEM data[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 158-166. DOI: 10.3969/j.issn.1001-1986.2021.03.020
    [2]WANG Yongguo, WANG Ming, XU Peng. Characteristics of collapsed fractured zone development of No.3-1 seam roof in Bayangaoler coal mine[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(S1): 37-42. DOI: 10.3969/j.issn.1001-1986.2019.S1.007
    [3]SUN Siqing, ZHENG Kaige. Numerical simulation study on permeability enhancement effect of high pressure water cutting coal seam[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(2): 45-49. DOI: 10.3969/j.issn.1001-1986.2017.02.008
    [4]JIA Xiaoliang, CUI Hongqing, ZHANG Zimin. Numerical simulation of geostatic stress influening factor at the end of fault[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(4): 47-51. DOI: 10.3969/j.issn.1001-1986.2010.04.011
    [5]GAO Sheng-xiang, YE Rong-zhang, TANG Wei-li, XU Qing, HE Jin-qiang. Establishment of complex geological body FLAC3D model by using MATLAB interface program[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(5): 51-53. DOI: 10.3969/j.issn.1001-1986.2009.05.012
    [6]LI Rong-wei, HOU En-ke, LIU Tian-lin. Stability analysis of combined slope in open-pit coal based on 3D numerical simulation[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(2): 43-46,51.
    [7]LU Dun-hua, HE Zhong-ming, LIN Hang. Numerical analysis for grouting effect in jointed slope by FLAC3D[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(2): 45-48.
    [8]YANG Chang-bin, ZHANG Sheng-yun, XU Jiang-bo, LIU Gui-ying, YANG Jian-cheng, LIU Zhao. FLAC3D program and its applications in couple problem between primary support design and rock wall condition in double-arch tunnel[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(5): 49-52.
    [9]XU Pei-hua, CHEN Jian-ping, HUANG Run-qiu, YAN Ming. Analyses of 3D numerical simulation of toppling deformation mechanism of Jiefanggou left slope in Jingping Step 1 hydropower station[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(4): 40-43.
    [10]ZHU Ji-yong, XU Guang-quan, GONG Gu-pei. Numerical simulation with effective reinforced area of dynamic consolidation[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(2): 39-43.
  • Cited by

    Periodical cited type(19)

    1. 汪伟民,郝红俊,翟晓荣,程龙艺,汪蒙,庞瑶. 基于改进AHP-独立性权系数法的地质构造复杂程度定量评价. 煤炭技术. 2024(04): 119-124 .
    2. 高阳. 熵权耦合聚类法在奥灰岩溶水系统径流带划分中的应用. 华北自然资源. 2023(04): 61-63 .
    3. 李军,张波. 基于IFAHP-改进熵权法的煤矿综合防尘体系安全评价. 煤炭技术. 2023(09): 195-199 .
    4. 安律宁,陈继福,董广铭,李玉兵. 基于层次聚类模糊综合评判的矿井突水危险性评价. 煤炭与化工. 2023(10): 49-56 .
    5. 万松,范祝连,邓双,卞阿娜. 基于GIS的山地生态县域生态敏感性研究——以闽侯县为例. 南方林业科学. 2022(02): 58-63 .
    6. 姚辉,尹尚先,徐维,张润畦,蒋知廷. 基于组合赋权的加权秩和比法的底板突水危险性评价. 煤田地质与勘探. 2022(06): 132-137 . 本站查看
    7. 郑剑英. 基于综合赋权的煤层底板突水危险性评价. 工矿自动化. 2022(08): 140-146 .
    8. 黄家远. 基于IFAHP-熵权法的煤矿瓦斯防治系统安全评价. 中国矿山工程. 2022(04): 9-15 .
    9. 左林霄,高鹏,冯栋,王晓玮,侯恩科. 基于AHP-熵权法耦合方法的地质构造复杂程度定量评价. 煤炭科学技术. 2022(11): 140-149 .
    10. 尹会永,周鑫龙,郎宁,张历峰,王明丽,吴焘,李鑫. 基于SSA优化的GA-BP神经网络煤层底板突水预测模型与应用. 煤田地质与勘探. 2021(06): 175-185 . 本站查看
    11. 黄欢,朱宏军. 基于“富水性指数法”的煤层顶板含水层涌水危险性评价. 煤矿安全. 2020(02): 192-196 .
    12. 施龙青,张荣遨,韩进,丛培章,秦道霞,郭玉成. 基于熵权法-层次分析法耦合赋权的多源信息融合突水危险性评价. 河南理工大学学报(自然科学版). 2020(03): 17-25 .
    13. 韩承豪,魏久传,谢道雷,徐建国,张伟杰,赵智超. 基于集对分析-可变模糊集耦合法的砂岩含水层富水性评价——以宁东矿区金家渠井田侏罗系直罗组含水层为例. 煤炭学报. 2020(07): 2432-2443 .
    14. 刘伟韬,孙茜,徐百超. 基于GIS及主成分熵权法的底板突水危险性评价. 矿业研究与开发. 2020(11): 83-88 .
    15. 董丽丽,费城,张翔,曹超凡. 基于LSTM神经网络的煤矿突水预测. 煤田地质与勘探. 2019(02): 137-143 . 本站查看
    16. 王志刚,付小锦,梁杰,曹健,江胜国. 天津静海含煤区无井式煤炭地下气化选址地质评价模型. 煤田地质与勘探. 2019(03): 41-48 . 本站查看
    17. 刘德民,尹尚先,连会青. 煤矿工作面底板突水灾害预警重点监测区域评价技术. 煤田地质与勘探. 2019(05): 9-15 . 本站查看
    18. 霍丙杰,解振华,范张磊,荆雪冬. 陷落柱渗流突水机理及强度主控因素模拟. 煤田地质与勘探. 2019(06): 84-91 . 本站查看
    19. 胡今朝,林雨佳. 层次分析法在矿山地质环境检测中的应用. 世界有色金属. 2018(22): 276-277 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (92) PDF downloads (13) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return