CAO Haidong, MIAO Hechao, CHI Zan, GAO Sihua. Water cutoff curtain technology of open-pit coal mine based on low strength impermeable concrete[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 61-67,73. DOI: 10.3969/j.issn.1001-1986.2020.04.009
Citation: CAO Haidong, MIAO Hechao, CHI Zan, GAO Sihua. Water cutoff curtain technology of open-pit coal mine based on low strength impermeable concrete[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 61-67,73. DOI: 10.3969/j.issn.1001-1986.2020.04.009

Water cutoff curtain technology of open-pit coal mine based on low strength impermeable concrete

Funds: 

National Key R&D Program of China(2017YFC0804106)

More Information
  • Received Date: April 06, 2020
  • Revised Date: June 18, 2020
  • Published Date: August 24, 2020
  • The concrete underground continuous wall has the advantages of convenient construction, reliable quality, good impermeability and so on. It is widely used in water conservancy, hydropower, foundation pit support, subway and other impermeability projects. The materials used are both plastic concrete and rigid concrete. In the water-cutting curtain project of an open-pit coal mine in Inner Mongolia, according to its engineering geological and hydrogeological characteristics, a kind of low-strength(8-10 MPa) impermeable(P6 grade) concrete was developed as the wall casting material, which water/cementitious materials ratio is 0.68, sand ratio is 45%, For 1 m3 of concrete, the content of each material is 180 kg of cement, 200 kg of fly ash, 20 kg of bentonite, 720 kg of sand and 880 kg of stones. The mechanism of permeability and anti-permeability was analyzed, and the results were verified by the test of drilling and pumping. The test results show that the concrete wall is complete and continuous, its compressive strength is up to 8.3 MPa, and its permeability coefficient is as low as 8.67×10-7cm/s. After the implementation of the project, the drainage of the pit is significantly reduced, and the measure guarantees the development of safety, green and sustainable of coal mine, and has a significant economic, social and ecological benefit.
  • [1]
    温亮,阎长虹,张政,等. 水泥-粉煤灰-煤渣-吹填粉细砂混合料强度试验[J]. 煤田地质与勘探,2019,47(1):149-154.

    WEN Liang,YAN Changhong,ZHANG Zheng,et al. Test on the strength of the backfill fine sand mixture composed of cement-fly ash-cinder[J]. Coal Geology & Exploration,2019,47(1):149-154.
    [2]
    薛云峰. 混凝土抗渗墙质量控制及检测技术研究[D]. 长沙:中南大学,2007.

    XUE Yunfeng. Research of quality control and inspection technology on concrete impervious core[D]. Changsha:Central South University,2007.
    [3]
    苗贺朝,邵生俊,李骏,等. 隧道穿越非饱和黄土场地浸水试验初探[J]. 地下空间与工程学报,2019,15(4):1066-1072.

    MIAO Hechao,SHAO Shengjun,LI Jun,et al. Primary investigation of infiltration field tests on unsaturated loess tunnel[J]. Chinese Journal of Underground Space and Engineering, 2019,15(4):1066-1072.
    [4]
    陈鹏飞,垄晓南,刘念武. 止水帷幕的挡土作用对深基坑变形的影响[J]. 岩土工程学报,2014,36(增刊2):254-258.

    CHEN Pengfei,LONG Xiaonan,LIU Nianwu. Effect of curtain's role in retaining on deformation of deep excavations[J]. Chinese Journal of Geotechnical Engineering,2014,36(Sup.2):254-258.
    [5]
    王双明,段中会,马丽,等. 西部煤炭绿色开发地质保障技术研究现状与发展趋势[J]. 煤炭科学技术,2019,47(2):1-6.

    WANG Shuangming,DUAN Zhonghui,MA Li,et al. Research status and future trends of geological assurance technology for coal green development in western China[J]. Coal Science and Technology,2019,47(2):1-6.
    [6]
    张雁. 露天煤矿防渗墙截渗减排机制及工程应用研究[D]. 北京:煤炭科学研究总院,2018. ZHANG Yan. Study on the mechanism and engineering application of seepage cutoff and drainage reduction of diaphragm wall in open-pit coal mine[D]. Beijing:China Coal Research Institute, 2018.
    [7]
    范立民,马雄德,蒋泽泉,等. 保水采煤研究30年回顾与展望[J]. 煤炭科学技术,2019,47(7):1-30.

    FAN Liming,MA Xiongde,JIANG Zequan,et al. Review and thirty years prospect of research on water-preserved coal mining[J]. Coal Science and Technology,2019,47(7):1-30.
    [8]
    靳德武,刘其声,王琳,等. 煤矿(床)水文地质学的研究现状及展望[J]. 煤田地质与勘探,2009,37(5):28-31.

    JIN Dewu,LIU Qisheng,WANG Lin,et al. Development and prospect of coal deposit hydrogeology[J]. Coal Geology & Exploration,2009,37(5):28-31.
    [9]
    王皓. 含水煤层水害形成机理及防治技术[J]. 煤田地质与勘探,2019,47(3):117-123.

    WANG Hao. Formation mechanism of coal seam aquifer and water hazard control technology[J]. Coal Geology & Exploration,2019,47(3):117-123.
    [10]
    谢娟. 煤矿开采对地下水水质及水量的影响研究[D]. 西安:西安科技大学,2012.

    XIE Juan. Study on the effect of groundwater quality and quantity in coal mining[D]. Xi'an:Xi'an University of Science and Technology,2012.
    [11]
    张泓,夏宇靖,张群,等. 深层煤矿床开采地质条件及其综合探测-现状与问题[J]. 煤田地质与勘探,2009,37(1):1-11.

    ZHANG Hong,XIA Yujing,ZHANG Qun. Coal-mining geological conditions and explorations of deep coal deposits:Status and problems[J]. Coal Geology & Exploration,2009,37(1):1-11.
    [12]
    李全生,郭俊廷,戴华阳. 基于采动充分性的地表动态下沉预计方法[J]. 煤炭学报,2020,45(1):160-167.

    LI Quansheng,GUO Junting,DAI Huayang. Surface dynamic subsidence prediction method based on mining sufficiency degree[J]. Journal of China Coal Society,2020,45(1):160-167.
    [13]
    张雁,黄选明,彭巍,等. 截水帷幕在露天煤矿截渗减排中的应用[J]. 煤炭学报,2020,45(5):1865-1873.

    ZHANG Yan,HUANG Xuanming,PENG Wei,et al. Application of water cutoff curtain in the seepage cutoff and drainage reduction of open-pit coal mine[J]. Journal of China Coal Society,2020,45(5):1865-1873.
    [14]
    徐斌,董书宁,徐路路,等. 水泥基注浆材料浆液稳定性及其析水规律试验[J]. 煤田地质与勘探,2019,47(5):24-31.

    XU Bin,DONG Shuning,XU Lulu,et al. Stability of cement-based grouting slurry and test of its bleeding law[J]. Coal Geology & Exploration,2019,47(5):24-31.
    [15]
    王海,黄选明,朱明诚,等. 基于高掺量粉煤灰防渗墙的露天矿水资源保护技术[J]. 煤炭学报,2020,45(3):1160-1169.

    WANG Hai,HUANG Xuanming,ZHU Mingcheng,et al. Water-preserved coal mining technology in open pit based on cutoff wall with high fly ash content[J]. Journal of China Coal Society,2020,45(3):1160-1169.
    [16]
    谷拴成,孙冠临,苏培莉,等. 岩体裂隙动水注浆扩散半径影响试验[J]. 煤田地质与勘探,2019,47(5):144-149.

    GU Shuancheng,SUN Guanlin,SU Peili,et al. Test of the influence of dynamic water grouting diffusion radius of fractures in rock[J]. Coal Geology & Exploration,2019,47(5):144-149.
    [17]
    尚宏波,靳德武,赵春虎,等. 砾岩含水层帷幕浆液运移规律与改性效果分析[J]. 煤炭学报,2019,44(8):2460-2469.

    SHANG Hongbo,JIN Dewu,ZHAO Chunhu,et al. Transport law of curtain grouting fluid in conglomerate aquifer and evaluation of rock mass modification effect[J]. Journal of China Coal Society,2019,44(8):2460-2469.
    [18]
    刘基,靳德武,姬亚东,等. 复杂水文地质条件下大型帷幕截流工程效果数值仿真分析[J]. 煤炭学报,2019,44(8):2427-2436.

    LIU Ji,JIN Dewu,JI Yadong,et al. Numerical simulation analysis of closure effect of large curtain work with complex hydrogeological conditions[J]. Journal of China Coal Society,2019,44(8):2427-2436.
    [19]
    董书宁,王皓,张文忠. 华北型煤田奥灰顶部利用与改造判别准则及底板破坏深度[J]. 煤炭学报,2019,44(7):2216-2226.

    DONG Shuning,WANG Hao,ZHANG Wenzhong. Judgement criteria with utilization and grouting reconstruction of top Ordovician limestone and floor damage depth in North China coal field[J]. Journal of China Coal Society,2019,44(7):2216-2226.
    [20]
    李建军. 薄型抓斗塑性混凝土防渗墙技术研究及在长江堤防治理中的应用[D]. 西安:西安理工大学,2002.

    LI Jianjun. The research on grab thin concrete diaphragm wall and its applying in levee strengthening of Changjiang river[D]. Xi'an:Xi'an University of Technology,2002.
    [21]
    许颜,李松然,刘献科. 超声波技术在桩基完整性检测中的应用研究[J]. 建筑技术开发,2020,47(4):155-156.

    XU Yan,LI Songran,LIU Xianke. Application research of ultrasonic technology in pile foundation integrity testing[J]. Building Technology Development,2020,47(4):155-156.
    [22]
    王保田,陈西安. 悬挂式防渗墙防渗效果的模拟试验研究[J]. 岩石力学与工程学报,2008,27(增刊1):2766-2771.

    WANG Baotian,CHEN Xi'an. Research on effect of suspended cut-off wall with simulation test[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(Sup.1):2766-2771.
    [23]
    吕福财,朱建华,周兵,等. 围井试验法在防渗墙工程质量检测中的应用[J]. 水利科技与经济,2008,14(12):1032.

    LYU Fucai,ZHU Jianhua,ZHOU Bing,et al. Application of well test method in quality inspection of cutoff wall[J]. Water Conservancy Science and Technology and Economy,2008,14(12):1032.
  • Cited by

    Periodical cited type(12)

    1. 石垚,雷瀚,杨新路,徐世达. 煤矿坚硬顶板灾害水力压裂防治技术监测及评估. 煤炭工程. 2024(02): 122-130 .
    2. 王国举 ,赵立松 ,高刚 ,周金艳 . 基于井下煤层水力压裂的微震时空发育规律研究. 煤炭技术. 2024(05): 207-211 .
    3. 李斌,杨帆,张红杰,冯雷,安琦,郝召兵. 神府区块深部煤层气高效开发技术研究. 煤田地质与勘探. 2024(08): 57-68 . 本站查看
    4. 康红普,冯彦军,张震,赵凯凯,王鹏. 煤矿井下定向钻孔水力压裂岩层控制技术及应用. 煤炭科学技术. 2023(01): 31-44 .
    5. 贾进章,王东明,李斌. 水力压裂有效压裂半径的影响因素研究. 中国安全生产科学技术. 2022(06): 58-64 .
    6. 钟坤,陈卫忠,赵武胜,秦长坤,曹怀轩,谢华东. 煤矿坚硬顶板分段水力压裂防冲效果监测与评价. 中南大学学报(自然科学版). 2022(07): 2582-2593 .
    7. 张辰宇. 基于5G通信技术的矿井开采工作面环境监测系统. 能源与环保. 2022(11): 220-225 .
    8. 闫文超,崔伟雄,段建华,丛琳,蔺兑波. 井-孔联合微震技术在工作面监测中的应用. 煤矿安全. 2021(11): 95-99 .
    9. 王选琳,李鹏,周东平,王凯. 煤矿井下水力加砂压裂技术工程应用研究. 河南城建学院学报. 2020(03): 29-37 .
    10. 姚学庆,时歌声,陈冬冬,郭艳飞,王浩昌. 基于含水率变化的压裂半径考察. 能源与节能. 2020(10): 23-25 .
    11. 宋延秋. 井下压裂实时监测技术及其应用. 化学工程与装备. 2020(10): 120+126 .
    12. 邓帅奇,李东会,赵朋朋. 基于煤岩特征弹性参数的掘进煤巷地震波超前探测研究. 煤矿安全. 2020(12): 192-197 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (214) PDF downloads (35) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return