BAI Zhongrong. Stacking angle of slurry-aeolian sand dual-phase medium filling material[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(3): 24-28,34. DOI: 10.3969/j.issn.1001-1986.2020.03.004
Citation: BAI Zhongrong. Stacking angle of slurry-aeolian sand dual-phase medium filling material[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(3): 24-28,34. DOI: 10.3969/j.issn.1001-1986.2020.03.004

Stacking angle of slurry-aeolian sand dual-phase medium filling material

Funds: 

Science and Technology Innovation Fund Project of Xi'an Research Institute of CCTEG(2015XAYZD16)

More Information
  • Received Date: January 15, 2019
  • Revised Date: April 28, 2019
  • Published Date: June 24, 2020
  • Stacking angle is an important parameter to describe the spatial accumulation pattern of filling material in the goaf. It has important guiding significance for determining the drilling distance, optimizing the slurry configuration and adjusting the grouting process parameters. In order to grasp the variation law of stacking angle of slurry-aeolian sand dual-phase medium filling material, using self-flow stacking model experiment of tailings and rheological properties experiment, the mixing ratio of aeolian sand was taken as a variable to determine the slurry accumulation parameters and rheological parameters on different conditions of sand ratio. Based on this, Sofra & Boger formula was modified and the accumulation angle calculation formula suitable for slurry-aeolian sand dual-phase media filling material was established, which provided a new way for the quantitative evaluation of filling material stacking angle.
  • [1]
    冀前辉. 废弃煤矿废弃物地下灌注技术可行性探讨[J]. 煤田地质与勘探,2014,42(4):69-76.

    JI Qianhui. Feasibility of waste backfilling in abandoned coal mine[J]. Coal Geology & Exploration,2014,42(4):69-76.
    [2]
    刘浪,辛杰,张波,等. 矿山功能性充填基础理论与应用探索[J]. 煤炭学报,2018,43(7):1811-1820.

    LIU Lang,XIN Jie,ZHANG Bo,et al. Basic theories and applied exploration of functional backfill in mines[J]. Journal of China Coal Society,2018,43(7):1811-1820.
    [3]
    童立元,刘松玉,邱钰,等. 高速公路下伏采空区问题国内外研究现状及进展[J]. 岩石力学与工程学报,2004,23(7):1198-1202.

    TONG Liyuan,LIU Songyu,QIU Yu,et al. Current research state of problems associated with mined-out regions under expressway and future development[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(7):1198-1202.
    [4]
    刘鹏亮,张华兴,崔锋,等. 风积砂似膏体机械化充填保水采煤技术与实践[J]. 煤炭学报,2017,42(1):118-126.

    LIU Pengliang,ZHANG Huaxing,CUI Feng,et al. Technology and practice of mechanized backfill mining for water protection with aeolian sand paste-like[J]. Journal of China Coal Society,2017,42(1):118-126.
    [5]
    张鹏飞,赵同彬,傅知勇,等. 矸石充填采空区顶板沉降规律及矸石承载特性分析[J]. 煤炭科学技术,2018,46(11):50-56.

    ZHANG Pengfei,ZHAO Tongbin,FU Zhiyong,et al. Analysis on roof subsidence law and gangue load bearing characteristics in gangue filling goaf[J]. Coal Science and Technology,2018,46(11):50-56.
    [6]
    刘辉,何春桂,董增林,等. 高水材料充填技术在减小地表沉降中的应用[J]. 煤田地质与勘探,2010,38(6):54-57.

    LIU Hui,HE Chungui,DONG Zenglin,et al. Surface subsidence based on filling technology with materials of high water content[J]. Coal Geology & Exploration,2010,38(6):54-57.
    [7]
    邱华富,刘浪,孙伟博,等. 采空区充填体强度分布规律试验研究[J]. 中南大学学报(自然科学版),2018,49(10):2584-2592.

    QIU Huafu,LIU Lang,SUN Weibo,et al. Experimental study on strength distribution of backfill in goaf[J]. Journal of Central South University(Science and Technology),2018,49(10):2584-2592.
    [8]
    王新民. 基于深井开采的充填材料与管输系统的研究[D]. 长沙:中南大学,2006.

    WANG Xinming. A study of filling materials and pipeline transportation systems in deep mines[D]. Changsha:Central South University,2006.
    [9]
    赵才智. 煤矿新型膏体充填材料性能及其应用研究[D]. 徐州:中国矿业大学,2008.

    ZHAO Caizhi. Study on coal mine new paste filling material properties and its application[D]. Xuzhou:China University of Mining and Technology,2008.
    [10]
    白仲荣. 采空区内浆料堆积规律试验研究[D]. 北京:煤炭科学研究总院,2016.

    BAI Zhongrong. Experimental study on the law of slurry packing in goaf[D]. Beijing:China Coal Research Institute,2016.
    [11]
    陈安惠,陈寿根,张恒. 高速公路下伏采空区风积沙充填技术试验研究[J]. 岩土工程与地下工程,2013,33(1):57-59.

    CHEN Anhui,CHEN Shougen,ZHANG Heng,et al. Experimental study on filling technology of aeolian sand in mined-out area under expressway[J]. Geotechnical Engineering and Underground Engineering,2013,33(1):57-59.
    [12]
    SOFRA F,BOGER D V. Slope prediction for thickened tailings and paste[C]//8thinternational conference tailings and mine waste. Colorado:Colorado National University,2000:20-31.
    [13]
    FITTON T. Tailings beach slope prediction[D]. RMIT University,2007.
    [14]
    KWAK M. Flow behavior of tailing paste for surface disposal[J]. Mineral Processing,2005:201-227.
    [15]
    JEWELL R J,FOURIE A B. Paste and thickened tailings:A Guide[M]. Perth:Australian Centre for Geomechanics,2002.
    [16]
    王晓东. 风积砂质高浓度胶凝充填材料性能与粉煤灰掺量关系分析[J]. 工程地质学报,2016,24(1):78-86.

    WANG Xiaodong. Relationship between engineeringer formance and mix proportion of fly ash for cemented and high concentration backfill material with wind-blown sand as aggregate[J]. Journal of Engineering Geology,2016,24(1):78-86.
    [17]
    王晓东. 风积沙质胶结充填材料性能对水固比响应分析[J]. 煤田地质与勘探,2016,44(6):106-112.

    WANG Xiaodong. Influence of the performance of aeolian erinaceous cemented filling materials on response of water-solid ratio[J]. Coal Geology & Exploration,2016,44(6):106-112.
    [18]
    朱世彬,王晓东,许刚刚,等. 煤矿采空区充填高浓度胶结材料流变特性试验研究[J]. 煤炭科学技术,2017,45(11):69-73.

    ZHU Shibin,WANG Xiaodong,XU Ganggang,et al. Experimental study on rheological properties of high concentration cementing materials in coal mine goaf filling[J]. Coal Science and Technology,2017,45(11):69-73.
    [19]
    ADDIS P C,CUNNINGHAM E J. Comparison of beaching slopes from two centrally discharging tailings storage facilities[C]//C. Loan. I.M. Artbuthout. Proceedings of the 13th international seminar on paste and thickened tailings. Canada,2010:255-264.
    [20]
    习泳,杨盛凯,尹升华. 膏体自流坡度经验公式的检验与回归[J]. 中国矿山工程,2013,42(1):19-22.

    XI Yong,YANG Shengkai,YIN Shenghua. Verification and regression of empirical formula of paste gravity slope[J]. China Mine Engineering,2013,42(1):19-22.
  • Related Articles

    [1]ZHAO Hongbao, ZHANG Bo, ZHANG Chi, JI Dongliang. Mining-induced fault slip: Assessment model and method for determining fault instability ranges[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(3): 23-33. DOI: 10.12363/issn.1001-1986.24.08.0558
    [2]LI Huakun, ZHENG Liugen, CHEN Yongchun, LI Bing, TAO Pengfei, LI Hao. Exploring the pore structure of reconstructed soils and its effects on water and salt transport based on CT scanning[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(4): 120-127. DOI: 10.12363/issn.1001-1986.23.09.0586
    [3]QI Yueming, ZHOU Pei, ZHOU Lai, JIANG Dan, YANG Yuqing, LIU Yanzhuo. Sulphate contamination in an abandoned coal mine in light of mining effects[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(4): 89-100. DOI: 10.12363/issn.1001-1986.23.11.0783
    [4]SUN Wenbin, HAO Jianbang, DAI Xianzheng, KONG Lingjun. Response mechanism characteristics of mining-induced fault activation[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(4): 12-20. DOI: 10.12363/issn.1001-1986.23.09.0525
    [5]XU Bin, XIANG Fang, LI Shuxia. Distribution characteristics and paleo-climatic significance of continental climate-sensitive sediments in the Late Cretaceous in China[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 190-199. DOI: 10.3969/j.issn.1001-1986.2021.05.021
    [6]CHENG Bin, ZHAO Long, LI Zhiliang. Permeability distribution law of protected coal seam in mining-affected zone[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 77-81,86. DOI: 10.3969/j.issn.1001-1986.2017.03.014
    [7]WANG Hao, QIAO Wei, CHAI Rui. Overburden rock permeability variation and vertical zoning characteristics under the influence of coal mining[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(3): 51-55. DOI: 10.3969/j.issn.1001-1986.2015.03.010
    [8]FANG Tengjiao, LIAO Xuedong, HE Lubin, LI Jingjing. Failure mechanism and control of soft rock roadway under mining disturbance[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(2): 67-70. DOI: 10.3969/j.issn.1001-1986.2014.02.014
    [9]LI Ming-jian, LU Meng-sheng, GUO Peng-shan. Study of environmental geology effect of mining in Nansihu Area[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(6): 41-43.
    [10]Liu Ruixin. THE EFFECT OF MINING DISTURBANCE ON WATER INFLOW FROM THE RED BEDS INTO COAL MINE[J]. COAL GEOLOGY & EXPLORATION, 1992, 20(3): 37-39.
  • Cited by

    Periodical cited type(14)

    1. 吴见,张松航,贾腾飞,晁巍巍,彭文春,李世龙. 深部煤层钻孔保压取心流程分析及含气量测定方法. 石油实验地质. 2025(01): 163-172 .
    2. 何文渊,黄文松,崔泽宏,刘玲莉,段利江,赵一波. 澳大利亚苏拉特区块低煤阶煤层气有利区预测与高效开发策略. 石油与天然气地质. 2025(01): 31-46 .
    3. 申有义,王凯峰,唐书恒,张松航,郗兆栋,杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测. 岩性油气藏. 2024(04): 98-108 .
    4. 刘同庆,宋玉龙,牟义,黄涛,汝亮,周绍辉,曹峰,孟国强. 基于Petrel的煤顶板三维地质模型及地应力模型构建. 煤矿安全. 2023(05): 100-105 .
    5. 李勇,陈祖国,徐建军,周加佳,苏善博,张震. 寺河井田3号煤层含气量三维建模. 科技和产业. 2023(22): 275-280 .
    6. 姜在炳,杨建超,李勇,庞涛. 基于三维地质建模技术的煤层气抽采效果评价——以晋城寺河煤矿为例. 煤田地质与勘探. 2022(02): 55-64 . 本站查看
    7. 高连平,宋培娟,王庄. 基于三维激光特征二次匹配的室外景观建模方法. 应用激光. 2022(03): 147-153 .
    8. 郭广山,郭建宏,孙立春,刘丽芳,田永净. 基于随机森林算法的煤层含气量三维精细建模. 中国海上油气. 2022(04): 156-163 .
    9. 徐冬生. 邢台市任泽区地热资源开发利用研究. 中国煤炭地质. 2022(S2): 66-70 .
    10. 韩明辉,杨雪,胡海洋. 多薄煤层气藏三维地质建模技术及其应用——以黔西地区攀枝花煤矿为例. 天然气技术与经济. 2022(06): 1-8 .
    11. 刘冰,张松航,唐书恒,王鹏飞,翟佳宇,纪朝琪. 无越流补给含水层对煤层气排采影响的数值模拟. 煤田地质与勘探. 2021(02): 43-53 . 本站查看
    12. 宣涛,王文升,刘灵童,李建荣,秦鹏. 不连续、薄互层煤层气地质建模技术——以澳大利亚苏拉特盆地为例. 中国煤炭地质. 2021(06): 31-36+68 .
    13. 熊幸,韩文龙,赵石虎. 基于灰色关联的沁南柿庄地区含气量主控因素分析. 煤炭技术. 2021(07): 93-97 .
    14. 刘同庆. 煤质工业分析测井解释及三维建模研究. 煤炭技术. 2021(09): 71-75 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (84) PDF downloads (16) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return