ZHANG Huaiwen, HUANG Song, YAN Xiatong, ZHAO Shufeng, ZHANG Minglu, XIA Daping. Effect of white rot fungi pretreatment on methane production from anaerobic fermentation of coal[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 120-125. DOI: 10.3969/j.issn.1001-1986.2020.02.019
Citation: ZHANG Huaiwen, HUANG Song, YAN Xiatong, ZHAO Shufeng, ZHANG Minglu, XIA Daping. Effect of white rot fungi pretreatment on methane production from anaerobic fermentation of coal[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 120-125. DOI: 10.3969/j.issn.1001-1986.2020.02.019

Effect of white rot fungi pretreatment on methane production from anaerobic fermentation of coal

Funds: 

Science and Technology Key Project of Henan Province(182102310845)

More Information
  • Received Date: October 10, 2019
  • Revised Date: December 10, 2019
  • Published Date: April 24, 2020
  • To investigate the effect of white rot fungi pretreatment on methane production from anaerobic fermentation of coal, fermentation experiments of biogas production were conducted using long flame coal. The coal samples pretreated with white rot fungi were the experimental group(EG), and original untreated coal samples were the control group(CG). The COD(chemical oxygen demand) mass concentration, activity of coenzyme F420, and changes of coal morphology were measured using potassium dichromate method, ultraviolet spectrophotometry, and SEM, respectively. The results showed the following:The total gas production and conversion rate in the EG and CG were 2 322.00 mL and 5.10%, 1 330.20 mL and 4.70%, respectively. Moreover, the hydrolysis stage in the EG was significantly shorter than that in the CG. The COD value in the EG and CG was 32-176 mg/L and 576-609 mg/L, respectively, and the degradation of EG was more thorough. The maximum value of coenzyme F420 in the EG and CG was 0.011 72 μmol/L and 0.007 97 μmol/L, respectively, and its activity was effected by TOC(total organic carbon) content and acid-producing bacteria. At the end of pretreatment and gas produciton, the roughness of the coal surface in the EG was stronger, the adsorption sites and adsorption capacity of microorganisms were also more high, and accompanied by the generation of bacterioflora. This test research demonstrates the advantages and adaptability of biological pretreatment with white rot fungi, which is beneficial to the industrialization utilization of biogas resources in coal.
  • [1]
    占迪,何环,廖远松,等. 褐煤强化产甲烷菌群的群落分析及条件优化[J]. 微生物学报,2018,58(4):684-698.

    ZHAN Di,HE Huan,LIAO Yuansong,et al. Community structure analysis of methanogenic flora and optimization for bioaugmentation methane generation from lignite[J]. Acta Microbiologica Sinica,2018,58(4):684-698.
    [2]
    郭红光,王飞,李治刚. 微生物增产煤层气技术研究进展[J]. 微生物学通报,2015,42(3):584-590.

    GUO Hongguang,WANG Fei,LI Zhigang. Research progress of microbially enhanced coalbed methane[J]. Microbiology China,2015,42(3):584-590.
    [3]
    VINSON D S,BLAIR N E,MARTINI A M,et al. Microbial methane from in situ biodegradation of coal and shale:A review and reevaluation of hydrogen and carbon isotope signatures[J]. Chemical Geology,2017,453:128-145.
    [4]
    FLORES R M,RICE C A,STRICKER G D,et al. Methanogenic pathways of coal-bed gas in the Powder River basin,United States:The geologic factor[J]. International Journal of Coal Geology,2008,76(1/2):52-75.
    [5]
    贾舒婷,张栋,赵建夫,等. 不同预处理方法促进初沉/剩余污泥厌氧发酵产沼气研究进展[J]. 化工进展,2013,32(1):193-198.

    JIA Shuting,ZHANG Dong,ZHAO Jianfu,et al. Research on different pre-treatment methods for improving anaerobic digestion of primary/excess sludge of biogas production[J]. Chemical Industry and Engineering Progress,2013,32(1):193-198.
    [6]
    汪少洁. 白腐菌降解转化低阶煤的试验及机理研究[D]. 武汉:华中科技大学,2008. WANG Shaojie. Experimental and mechanism study on white rot fungi degradation of low-rank coal[D]. Wuhan:Huazhong University of Science & Technology,2008.
    [7]
    PINTO P A,DIAS A A,FRAGA I,et al. Influence of ligninolytic enzymes on straw saccharification during fungal pretreatment[J]. Bioresource Technology,2012,111:261-267.
    [8]
    KELLER F A,HAMILTON J E,NGUYEN Q A. Microbial pretreatment of biomass[J]. Applied Biochemistry and Biotechnology,2003,105(1/2/3):27-41.
    [9]
    柳珊,吴树彪,张万钦,等. 白腐真菌预处理对玉米秸秆厌氧发酵产甲烷影响实验[J]. 农业机械学报,2013,44(增刊2):124-129.

    LIU Shan,WU Shubiao,ZHANG Wanqin,et al. Effect of white-rot fungi pretreatment on methane production from anaerobic digestion of corn stover[J]. Transactions of the Chinese Society of Agricultural Machinery,2013,44(S2):124-129.
    [10]
    李俊旺. 白腐真菌降解褐煤的研究[D]. 淮南:安徽理工大学,2009.

    LI Junwang. Studies on lignite degradation by white rot fungi[D]. Huainan:Anhui University of Science & Technology,2009.
    [11]
    王龙贵,张明旭,欧泽深,等. 白腐真菌对煤炭的降解转化试验[J]. 煤炭学报,2006,31(2):241-244.

    WANG Longgui,ZHANG Mingxu,OU Zeshen,et al. Experimental of coal biodegradation by white rot fungus[J]. Journal of China Coal Society,2006,31(2):241-244.
    [12]
    徐一雯,蒋建国,刘诺,等. 预处理对厨余垃圾等有机废弃物联合厌氧发酵的影响[J]. 清华大学学报(自然科学版),2019,59(7):558-566.

    XU Yiwen,JIANG Jianguo,LIU Nuo,et al. Effects of pretreatment on anaerobic co-digestion of kitchen waste and other organic wastes[J]. Journal of Tsinghua University(Science and Technology),2019,59(7):558-566.
    [13]
    夏大平,陈曦,王闯,等. 褐煤酸碱预处理-微生物气化联产H2-CH4的实验研究[J]. 煤炭学报,2017,42(12):3221-3228.

    XIA Daping,CHEN Xi,WANG Chuang,et al. Experimental study on the production of H2-CH4 from lignite jointly with acid-alkali pretreatment-microbial gasification[J]. Journal of China Coal Society,2017,42(12):3221-3228.
    [14]
    张亦雯,郭红光,李亚平,等. 过氧化氢预处理中/高煤阶煤增产生物甲烷研究[J]. 煤炭科学技术,2019,47(9):262-267.

    ZHANG Yiwen,GUO Hongguang,LI Yaping,et al. Study on medium/high rank coal-producing methane with hydrogen peroxide pretreatment[J]. Coal Science and Technology,2019,47(9):262-267.
    [15]
    陈曦. 预处理褐煤的微生物降解联产H2-CH4实验研究[D]. 焦作:河南理工大学,2018. CHEN Xi. The coproduction of H2-CH4 by microbial degradation of pretreated lignite[D]. Jiaozuo:Henan Polytechnic University,2018.
    [16]
    HUANG Z X,LIERS C,ULLRICH R,et al. Depolymerization and solubilization of chemically pretreated Powder River basin subbituminous coal by manganese peroxidase(MnP) from Bjerkandera adusta[J]. Fuel,2013,112:295-301.
    [17]
    JONES E J P,HARRIS S H,BARNHART E P,et al. The effect of coalbed dewatering and partial oxidation on biogenic methane potential[J]. International Journal of Coal Geology,2013,115:54-63.
    [18]
    COLLINS P J,FIELD J A,TEUNISSEN P,et al. Stabilization of lignin peroxidases in white rot fungi by tryptophan[J]. Applied and Environmental Microbiology,1997,63(7):2543-2548.
    [19]
    FERRAZ A,RODRIGUEZ J,FREER J,et al. Biodegradation of Pinus radiata softwood by white-and brown-rot fungi[J]. World Journal of Microbiology and Biotechnology,2001,17(1):31-34.
    [20]
    蒋绍阶,刘宗源. UV254作为水处理中有机物控制指标的意义[J]. 重庆建筑大学学报,2002,24(2):61-65.

    JIANG Shaojie,LIU Zongyuan. The meaning of UV254 as an organic matter monitoring parameter in water supply & wastewater treatment[J]. Journal of Chongqing Jianzhu University,2002,24(2):61-65.
    [21]
    CHENG Yunhuan,SANG Shuxun,HUANG Huazhou,et al. Variation of coenzyme F420 activity and methane yield in landfill simulation of organic waste[J]. Journal of China University of Mining & Technology,2007,17(3):403-408.
    [22]
    YADVIK A,SREEKRISHNAN T R,KOHLI S,et al. Enhancement of biogas production from solid substrates using different techniques:A review[J]. Bioresource Technology,2004,95(1):1-10.
    [23]
    任南琪,王爱杰. 厌氧生物技术原理与应用[M]. 北京:化学工业出版社,2004:73-74.

    REN Nanqi,WANG Aijie. Technical principle and application of anaerobic biotechnology[M]. Beijing:Chemical Industry Press,2004:73-74.
    [24]
    董志伟,郭红玉,夏大平,等. 基于显微CT的煤生物降解过程中孔隙演化精细表征[J]. 煤田地质与勘探,2019,47(5):63-69.

    DONG Zhiwei,GUO Hongyu,XIA Daping,et al. Micro CT-based meticulous characterization of porosity evolution of coal in the process of biodegradation[J]. Coal Geology & Exploration,2019,47(5):63-69.
    [25]
    夏大平,苏现波,吴昱,等. 不同预处理方式和模拟产气实验对煤结构的影响[J]. 煤炭学报,2013,38(1):129-133.

    XIA Daping,SU Xianbo,WU Yu,et al. Effect of experiment of different pretreatment methods and simulating biogenic methane production on coal structure[J]. Journal of China Coal Society,2013,38(1):129-133.
    [26]
    王爱宽,秦勇. 褐煤本源菌在煤层生物气生成中的微生物学特征[J]. 中国矿业大学学报,2011,40(6):888-893.

    WANG Aikuan,QIN Yong. Performance of indigenous bacteria during the biogenic gas generation from brown coal[J]. Journal of China University of Mining & Technology,2011,40(6):888-893.
    [27]
    孙斌,李金珊,承磊,等. 低阶煤生物采气可行性:以二连盆地吉尔嘎朗图凹陷为例[J]. 石油学报,2018,39(11):1272-1278.

    SUN Bin,LI Jinshan,CHENG Lei. The feasibility of biological gas recovery in low-rank coal:A case study of Jiergalangtu depression in Erlian basin[J]. Acta Petrolei Sinica,2018,39(11):1272-1278.
  • Cited by

    Periodical cited type(14)

    1. 王大兴,胡海燕,邹佳群,王涛,朱根根,陈笑宇,梁烁. 准噶尔盆地东道海子凹陷二叠系下乌尔禾组陆相页岩气形成富集条件及主控因素. 地质科技通报. 2024(04): 98-112 .
    2. 任诺,宋怀雷,杨超,王文涛. 页岩在水压致裂过程中破裂规律的数值模拟研究. 水利规划与设计. 2023(01): 101-107 .
    3. 邱凯旋,李恒,郝世彦,张丽霞,唐永槐,马玉珊. 含砂岩薄互层陆相页岩气藏生产预测模型研究. 非常规油气. 2023(01): 111-121 .
    4. 李泽帆,陈相霖,李树刚,郭睿良,李泳,刘鹏. 高—过成熟页岩CH_4/N_2/CO_2混合气体竞争吸附特征与地质意义. 天然气地球科学. 2023(01): 169-180 .
    5. 魏若飞,信凯. 鄂尔多斯盆地东缘石西区块煤层气及致密砂岩气资源潜力评价. 中国煤炭地质. 2022(07): 7-11+38 .
    6. 李海,赵昌杰,王文涛. 不同层理倾角与石英含量下页岩破裂过程数值试验研究. 水利规划与设计. 2022(11): 108-113+167 .
    7. 李浩. 延长探区南部盒8段稀土元素地球化学示踪. 云南化工. 2021(06): 129-132 .
    8. 陆雨诗,胡勇,侯云东,孙继峰,何文祥,高小洋,司锦,宋雯馨. 鄂尔多斯盆地西缘羊虎沟组微量元素地球化学特征及沉积环境指示意义. 科学技术与工程. 2021(28): 11999-12009 .
    9. 客昆,秦建华,牟必鑫,余谦,魏洪刚,郝学峰,陈杨,客达,周家云,龚大兴. 楚雄盆地上三叠统舍资组泥页岩储层特征分析——以滇禄地3井为例. 科学技术与工程. 2021(28): 12020-12030 .
    10. 娄义黎,邬忠虎,王安礼,左宇军,刘镐,孙文吉斌. 流固耦合作用下页岩破裂过程的数值模拟. 煤田地质与勘探. 2020(01): 105-112 . 本站查看
    11. 王羽,汪丽华,王建强,王彦飞. 利用微米X射线显微镜研究陆相延长组页岩孔隙结构特征. 岩矿测试. 2020(04): 566-577 .
    12. 和钰凯,李贤庆,魏强,张学庆,邹晓艳,张亚超,李阳阳. 淮南潘谢矿区石盒子组煤系页岩气储层孔隙结构特征及影响因素. 科学技术与工程. 2020(33): 13618-13627 .
    13. 孙细宁,陈奕奕,王桂成,姜呈馥,许小强. 延长探区陆相页岩气产能影响因素分析. 复杂油气藏. 2019(04): 8-14 .
    14. 景丰. 陆相页岩气水平井中增韧防气窜固井水泥浆体系的研究. 石油化工应用. 2018(07): 5-10 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (114) PDF downloads (10) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return