SHI Zhijun, DONG Shuning, YANG Junzhe, XU Chao, HAO Shijun, LI Quanxin, CHEN Dianfu, YAO Ke, LIU Jianlin, TIAN Dongzhuang. Key technology of drilling in-seam directional borehole of 3 000 m in underground coal mine[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(6): 1-7. DOI: 10.3969/j.issn.1001-1986.2019.06.001
Citation: SHI Zhijun, DONG Shuning, YANG Junzhe, XU Chao, HAO Shijun, LI Quanxin, CHEN Dianfu, YAO Ke, LIU Jianlin, TIAN Dongzhuang. Key technology of drilling in-seam directional borehole of 3 000 m in underground coal mine[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(6): 1-7. DOI: 10.3969/j.issn.1001-1986.2019.06.001

Key technology of drilling in-seam directional borehole of 3 000 m in underground coal mine

Funds: 

National Science and Technology Major Project(2016ZX05045-003-001)

More Information
  • Received Date: November 10, 2019
  • Published Date: December 24, 2019
  • The pre-mining gas governance mode in Baode coal mine requires that long directional borehole of more than 3 000 m can be drilled along coal seam. In view of the existing technology and equipment, there are technical problems in the construction of ultra-long directional borehole, such as the difficulty of sliding drilling, the large hydraulic pressure consumption in inlet waterway, the limited transmission distance of wireline MWD signal, and incapability of flushing liquid recycle. The technology of friction reduction in sliding drilling based on the hydraulic thrust of DHM and the torsion penetration of the ultra-long drilling tool, the technology of trajectory control with compound drilling based on angle control with rotary drilling and branch drilling are developed. The system of low-pressure water consumption, mud pulse wireless MWD and purification circulatory for flushing fluid are designed. Combined with the production needs of Baode coal mine, an ultra-long in-seam directional borehole through mining face with the depth of 3 353 m and the borehole diameter of 120 mm was completed. The drilling results show that the friction reduction technology of sliding drilling effectively reduces the sliding penetration pressure and improves the ability of deep borehole with sliding drilling markedly; the technology of trajectory control based on compound drilling can control the borehole trajectory effectively, which ensures the borehole along the coal seam, and improves the drilling capacity and efficiency; the signal transmission of mud pulse wireless MWD system is stable and reliable, which overcomes the limitation of signal long-distance transmission by wireline MWD system; the purification circulatory system for flushing fluid has good cleaning effect, which realizes the circulation of flushing fluid in directional drilling. The research results are of great significance to support the advance control of gas in large area of coal mine, the engineering of replacing tunnel with borehole, the prevention and control of water disaster and the geological exploration.
  • [1]
    石智军,姚克,田宏亮,等. 煤矿井下随钻测量定向钻进技术与装备现状及展望[J]. 煤炭科学技术,2019,47(5):22-28.

    SHI Zhijun,YAO Ke,TIAN Hongliang,et al. Present situation and prospect of directional drilling technology and equipment while drilling measurement in underground coal mine[J]. Coal Science and Technology,2019,47(5):22-28.
    [2]
    李泉新,石智军,田宏亮,等. 我国煤矿区钻探技术装备研究进展[J]. 煤田地质与勘探,2019,47(2):1-6.

    LI Quanxin,SHI Zhijun,TIAN Hongliang,et al. Progress in the research on drilling technology and equipment in coal mining areas of China[J]. Coal Geology & Exploration,2019,47(2):1-6.
    [3]
    刘飞,许超,王鲜,等. 顺煤层超长定向钻孔钻压传递规律研究[J]. 工矿自动化,2019,45(8):97-100.

    LIU Fei,XU Chao,WANG Xian,et al. Research of weight on bit transmission law of ultra-long directional borehole along coal seam[J]. Industry and Mine Automation,2019,45(8):97-100.
    [4]
    石智军,许超,李泉新,等. 煤矿井下2570 m顺煤层超深定向孔高效成孔关键技术[J/OL]. 煤炭科学技术,(2019-10-31)[2019-11-11]. http://kns.cnki.net/kcms/detail/11.2402.td.20191031.1541.002.html.

    SHI Zhijun,XU Chao,LI Quanxin,et al. Key technologies for making 2570 m ultra-deep directional borehole effectively along the coal seam in coal mine[J]. Coal Science and Technology,(2019-10-31)[2019-11-11]. http://kns.cnki.net/kcms/detail/11.2402.td.20191031.1541.002.html.
    [5]
    李泉新,石智军,许超,等. 2311 m顺煤层超长定向钻孔高效钻进技术[J]. 煤炭科学技术,2018,46(4):27-32.

    LI Quanxin,SHI Zhijun,XU Chao,et al. Efficient drilling technique of 2311 m ultra-long directional borehole along coal seam[J]. Coal Science and Technology,2018,46(4):27-32.
    [6]
    苏义脑,谢竹庄. 螺杆钻具和多头单螺杆马达的基本原理[J]. 石油钻采机械,1985,13(4):1-10.

    SU Yinao,XIE Zhuzhuang. Basic principle of screw drill and multi-head single screw motor[J]. Drilling & Production Equipment,1985,13(4):1-10.
    [7]
    谢竹庄. 螺杆钻具推力轴承的载荷研究[J],石油机械,1993,21(3):26-31.

    XIE Zhuzhuang. Study on thrust bearing load of screw drill[J]. China Petroleum Machinery,1993,21(3):26-31.
    [8]
    易先中,李智鹏,周元华,等. 地面钻柱扭摆方法释放井下摩阻的研究进展[J]. 钻采工艺,2014,37(4):73-76.

    YI Xianzhong,LI Zhipeng,ZHOU Yuanhua,et al. Research advances on releasing drill string friction effect by surface drill string oscillation method[J]. Drilling & Production Technology,2014,37(4):73-76.
    [9]
    李智鹏,许京国,陶瑞东,等. 扭矩摇摆技术研究现状[J]. 钻采工艺,2016,39(6):28-30.

    LI Zhipeng,XU Jingguo,TAO Ruidong,et al. Study on torque rocking technology[J]. Drilling & Production Technology,2016,39(6):28-30.
    [10]
    韩烈祥. 基于静摩擦扭矩释放的快速滑动定向钻井技术[J]. 天然气工业,2015,35(11):60-65.

    HAN Liexiang. A quick slide directional drilling technology based on static friction torque release[J]. Natural Gas Industry,2015,35(11):60-65.
    [11]
    许超. 煤矿井下复合定向钻进技术优势探讨[J]. 金属矿山,2014,43(2):112-116.

    XU Chao. Discussion on superiority of compound directional drilling technology in underground coal mine[J]. Metal Mine,2014,43(2):112-116.
    [12]
    刘建林,李泉新. 基于轨迹控制的煤矿井下复合定向钻进工艺[J]. 煤矿安全,2017,48(2):78-81.

    LIU Jianlin,LI Quanxin. Composite directional drilling technology for underground coal mine based on trajectory control[J]. Safety in Coal Mines,2017,48(2):78-81.
    [13]
    石智军,胡少韵,姚宁平,等. 煤矿井下瓦斯抽采(放)钻孔施工新技术[M]. 北京:地质出版社,2008.

    SHI Zhijun,HU Shaoyun,YAO Ningping,et al. New technology of gas drainage and drilling in coal mine[M]. Beijing:Geological Press,2008.
    [14]
    王传留,居培,高晓亮. 煤矿井下定向钻进用新型PDC钻头[J]. 金刚石与磨料磨具工程,2016(6):74-78.

    WANG Chuanliu,JU Pei,GAO Xiaoliang. Research on new type of directional drilling PDC bit used in coal mine drill[J]. Diamond & Abrasives Engineering,2016(6),74-78.
    [15]
    高晓亮,王传留,田宏杰.大直径定向长钻孔用PDC钻头设计与应用[J]. 煤炭工程,2018,50(5):150-152.

    GAO Xiaoliang,WANG Chuanliu,TIAN Hongjie. Design and application of PDC bit for major diameter directional long drilling hole[J]. Coal Engineering,2018,50(5):150-152.
    [16]
    许超,李泉新,刘建林,等. 煤矿瓦斯抽采定向长钻孔高效成孔工艺研究[J]. 金属矿山,2011(6):39-55.

    XU Chao,LI Quanxin,LIU Jianlin,et al. Research on high efficient long directional drilling process for gas drainage in coal mine[J]. Metal Mine,2011(6):39-55.
    [17]
    李泉新. 矿用泥浆脉冲无线随钻测量装置研发及应用[J]. 煤田地质与勘探,2018,46(6):193-197.

    LI Quanxin. Development and application of mine mud pulse wireless MWD device[J]. Coal Geology & Exploration,2018,46(6):193-197.
    [18]
    李泉新. 煤矿井下复合定向钻进及配套泥浆脉冲无线随钻测量技术研究[D]. 北京:煤炭科学研究总院,2018.

    LI Quanxin. Research on technology of drilling combined rotary with direction and related mud pulse MWD[D]. Beijing:China Coal Research Institute,2018.
    [19]
    方俊,谷拴成,石智军,等. 矿用泥浆脉冲无线随钻测量装置及其应用[J]. 工矿自动化,2019,45(2):12-17.

    FANG Jun,GU Shuancheng,SHI Zhijun,et al. Mine-used mud pulse wireless measurement while drilling device and its application[J]. Industry and Mine Automation,2019,45(2):12-17.
  • Related Articles

    [1]ZOU Jun, GUO Yan, GUI Herong, WANG Weimin, CHEN Zhenlin, LIU Faming, Dai Yanan, HU Yang, CHEN Zengbao, LI Jun, GAO Chuan, LI Heng. An experimental study on the yield strength of cement grout for grouting in the limestone area of a coal seam floor[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(4): 1-9. DOI: 10.12363/issn.1001-1986.24.11.0695
    [2]LIU Zhaoxing, ZHANG Qi. PFC numerical analysis on crack initiation mechanism of fracture grouting in top of Ordovician limestone[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(10): 72-85. DOI: 10.12363/issn.1001-1986.23.01.0019
    [3]XING Maolin, ZHENG Shitian, SHI Zhiyuan, ZHAO Shaolei, DU Botao, CUI Siyuan. Technology of raising upper limit of mining by grouting reconstruction in thick water-bearing sand layer and its application[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(5): 113-122. DOI: 10.12363/issn.1001-1986.22.07.0583
    [4]DONG Shuning, LIU Qisheng, WANG Hao, GUO Xiaoming, LIU Zhaoxing, ZHENG Shitian, NAN Shenghui, LIU Jianlin, ZHAO Zhao, SHI Zhiyuan. Theoretical framework and key technology of advance regional control of water inrush in coal seam floor[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(1): 185-195. DOI: 10.12363/issn.1001-1986.22.10.0813
    [5]HU Weiyue, ZHAO Chunhu, LYU Hanjiang. Main influencing factors for regional pre-grouting technology of water hazard treatment in coal seam floor and efficient hole arrangement[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(11): 134-143. DOI: 10.12363/issn.1001-1986.22.04.0279
    [6]ZHENG Shitian, MA Hewen, JI Yadong. Optimization of regional advanced coal floor water hazard prevention and control technology and its application[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 167-173. DOI: 10.3969/j.issn.1001-1986.2021.05.018
    [7]ZHAO Chunhu, WANG Hao, JIN Dewu. Discussion on roof water loss control method of coal seam based on pre-splitting grouting reformation(P-G)[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(2): 159-167. DOI: 10.3969/j.issn.1001-1986.2021.02.020
    [8]ZHENG Shitian. Advanced exploration and control technology of limestone water hazard in coal seam floor in Huainan and Huaibei coalfields[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(4): 142-146,153. DOI: 10.3969/j.issn.1001-1986.2018.04.023
    [9]NAN Shenghui. Technical feasibility of grouting reform for upper part of Ordovician limestone in Xingtai and Handan coal mining areas[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(3): 37-40. DOI: 10.3969/j.issn.1001-1986.2010.03.009
    [10]GUO Chun, XING Wen-ping, LI Wen-jun. Application of transient electromagnetic techniques to grouting reconstruction of lower confining bed[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(4): 74-76.
  • Cited by

    Periodical cited type(64)

    1. 刘少伟,郭泽政,冯超,牛帅. 防隔水煤柱定向爆破应力转移机理及参数优化设计. 河南理工大学学报(自然科学版). 2025(01): 1-9 .
    2. 王占礼. 羊东矿8472工作面综合物探与区域治理验证. 煤炭与化工. 2025(01): 73-77+83 .
    3. 任志祥. 地面注浆防治水设备选型及工艺优化. 煤矿机械. 2025(03): 116-119 .
    4. 丁华忠,王力,景慎怀,黄寒静,陈洪岩,程合玉,李明强,曾庆辉,聂超. 松软煤层条带预抽底板梳状孔成孔及飞管完孔技术研究. 煤炭技术. 2025(03): 141-145 .
    5. 薛杨,李建林,郭水涛,徐博博. 基于定向钻探技术的深部矿井突水点封堵方案优化. 煤矿安全. 2024(01): 192-199 .
    6. 赵睿,刘磊. 瞬变电磁技术在注浆效果检测的试验研究. 煤矿机械. 2024(03): 31-33 .
    7. 钟蜜. 城郊煤矿薄层灰岩水害治理技术研究与实践. 山东煤炭科技. 2024(02): 126-131 .
    8. 桂和荣,李俊,陈永青,余浩,王浩,叶爽,陈大星,梁展,胡洋,郭艳,许继影. 基于主量元素地球化学的岩屑层位源解析. 煤炭学报. 2024(02): 929-940 .
    9. 董书宁,樊敏,郭小铭,刘英锋,郭康,姬中奎,李超峰,薛小渊. 陕西省煤矿典型水灾隐患特征及治理技术. 煤炭学报. 2024(02): 902-916 .
    10. 王琦. 煤层底板含水层注浆巷道跑浆风险及防范措施. 煤炭技术. 2024(07): 125-129 .
    11. 高保彬,任闯难,李兵兵,程磊,宋少鹏,齐治虎,徐影. 韧性视角下华北型煤田底板承压灰岩水原位保护技术研究. 河南理工大学学报(自然科学版). 2024(04): 12-20 .
    12. 李建林,薛杨,王心义,徐博博,郭水涛. 基于模糊综合评价的导水通道超前探查判识技术. 煤炭科学技术. 2024(07): 178-186 .
    13. 曾一凡,于超,武强,赵菱尔,尹尚先,张博成,刘泽洋,崔雅帅,阚雪冬,黄浩. 煤矿防治水“三区”划分方法及其水害防治意义. 煤炭学报. 2024(08): 3605-3618 .
    14. 纪伟,陈志坚,赵仲珩. 边坡地下水渗透压力数据时序分解方法研究. 中国煤炭地质. 2024(11): 32-39 .
    15. 闫鑫,丁湘,蒲治国,纪卓辰,李哲,刘凯祥,张寅. 基于AHP-CRITIC奥灰突水危险性评价的工作面水害分区防控. 中国矿业. 2024(12): 217-225 .
    16. 刘文武,刘杰,芮学来. 淮南张集矿东-1煤上采区多分支水平注浆井钻井技术. 矿产勘查. 2024(12): 2329-2336 .
    17. 唐道增,王永宝,陈建刚,陈军涛,云明,刘磊,郭洪运,傅子群. 黄河北煤田定向钻孔注浆效果的全周期评价方法. 煤炭技术. 2023(01): 151-156 .
    18. 武强,郭小铭,边凯,杜鑫,许珂,卜文扬,曾一凡. 开展水害致灾因素普查 防范煤矿水害事故发生. 中国煤炭. 2023(01): 3-15 .
    19. 董书宁,刘其声,王皓,郭小铭,柳昭星,郑士田,南生辉,刘建林,赵兆,石志远. 煤层底板水害超前区域治理理论框架与关键技术. 煤田地质与勘探. 2023(01): 185-195 . 本站查看
    20. 樊鑫,赵晓光,唐胜利,解海军,程建远,王云宏,王盼. WSD-SVM在工作面底板破坏深度微震事件自动识别中的应用. 西安科技大学学报. 2023(01): 160-166 .
    21. 许峰. 阶梯式导水断层带探查及水害防治技术. 矿业安全与环保. 2023(01): 82-85+91 .
    22. 邢茂林. 煤层底板区域治理后断层突水原因及探讨. 煤矿安全. 2023(03): 204-211 .
    23. 魏廷双,许光泉,高宇航,党保全,孙贵,丁庆和,杨婷婷. 潘二矿奥陶系岩溶地下水数值模拟及疏放性分析. 地下水. 2023(02): 13-16 .
    24. 李晓龙. 整合矿井复采条件下老空水防治技术体系研究. 煤矿安全. 2023(04): 184-193 .
    25. 陈陆望,胡永胜,张杰,张苗,郑剑,郑忻,张媛媛,蔡欣悦,武明辉. 华北型煤田水文地球化学勘探关键技术研究进展. 煤田地质与勘探. 2023(02): 207-219 . 本站查看
    26. 谢治刚,孙贵,随峰堂,许光泉,张海涛,卜军,詹润. 基于层次分析法的地面区域治理目的层位优化选择. 煤炭科学技术. 2023(03): 201-211 .
    27. 曹栋. 羊东矿8472工作面区域治理与分析. 煤炭与化工. 2023(04): 82-86 .
    28. 刘艺芳. 新型多泵高压注浆混合装置的设计及应用. 矿山机械. 2023(06): 46-49 .
    29. 马强,崔岩波. 定向长钻孔在煤矿工作面防治水中的应用. 价值工程. 2023(17): 124-126 .
    30. 李博,罗玉岚,樊娟,郭小铭,李梦华. 煤层底板突水多源信息综合评价系统设计开发与实现. 煤田地质与勘探. 2023(06): 1-12 . 本站查看
    31. 尚慧. 晋城西北矿区底板隔水层采动影响模拟研究. 重庆科技学院学报(自然科学版). 2023(04): 13-20 .
    32. 董书宁,李智,郑士田,郭小铭,王宇航. 煤层底板导水通道钻孔超前探查与多元信息识别技术. 煤炭科学技术. 2023(07): 15-23 .
    33. 王震. 地面区域治理技术在隐伏断层超前探查中的应用. 中国煤炭地质. 2023(07): 47-50 .
    34. 吕红莉,童传霞,郝卫光. 带压开采煤层底板奥灰岩溶水害区域超前治理技术与应用. 煤炭技术. 2023(10): 163-166 .
    35. 毛怀勇,王正,刘凯祥,邹宏,贺晓浪,苏文,冯洁. 井下近水平定向钻进技术在煤矿奥灰水害防治中的应用. 中国煤炭地质. 2023(08): 38-44 .
    36. 薛小勇,南晶晶,胡晓亮,王兴明. 西卓煤矿首采工作面底板水害超前区域治理分析. 科学技术创新. 2023(24): 190-193 .
    37. 许光泉,鲍慧,刘星,贾娒,谢治刚,孙贵. 底板岩溶水害治理效果综合评价模型及应用. 安徽理工大学学报(自然科学版). 2023(05): 76-82 .
    38. 李杰,刘兆峰,唐佳伟,王霄. 矿井水处理技术研究进展. 中国煤炭. 2023(S2): 310-314 .
    39. 张智聪. 带压开采技术体系研究及应用. 内蒙古煤炭经济. 2023(21): 120-122 .
    40. 赵晨德,王心义,任君豪,郝建卿,孟建勇. 基于深度学习理论的煤层底板突水危险性预测. 地下空间与工程学报. 2023(06): 2090-2100 .
    41. 吴铁卫,高磊,程振雨. 山西介休青云煤矿底板奥灰水区域治理目的层位研究. 中国煤炭地质. 2023(12): 43-46 .
    42. 丁亚恒,李少华,陈卫. 地面定向顺层钻孔注浆改造技术在新桥煤矿水害治理中的应用. 能源与环保. 2023(12): 108-114+120 .
    43. 孙亚军,张莉,徐智敏,陈歌,赵先鸣,李鑫,高雅婷,张尚国,朱璐璐. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展. 煤炭学报. 2022(01): 423-437 .
    44. 任君豪,王心义,王麒,王俊智,张波,郭水涛. 基于多方法的煤层底板突水危险性评价. 煤田地质与勘探. 2022(02): 89-97 . 本站查看
    45. 高银贵,孔皖军,安士凯,薛贤明,郑刘根,常成林,姜春露,国伟,雷锋,王刚,杨成超. 唐家会矿奥灰水害区域治理试验工程及防控技术. 煤矿安全. 2022(03): 91-95+103 .
    46. 杨忠,李晓龙. 带压开采煤层底板破坏深度研究. 能源与环保. 2022(05): 306-310 .
    47. 李凯,李晓龙. 基于改进型突水系数法治理底板奥灰水害技术. 煤田地质与勘探. 2022(06): 125-131 . 本站查看
    48. 丁同福,汪敏华,刘满才,朱昌淮,文东明,陈晓雷. 叠层多分支水平井精准建造陷落柱堵水塞技术. 煤炭科学技术. 2022(07): 244-251 .
    49. 张历峰. 采动影响下滨湖煤矿奥灰地下水流场数值模拟研究. 山东煤炭科技. 2022(08): 189-191+195+198 .
    50. 朱敬忠,刘启蒙,刘瑜,范佳俊,杨森. 断层活化特征及防隔水煤柱合理化留设研究. 煤炭科学技术. 2022(08): 166-171 .
    51. 姬中奎,疏义国,翟恩发,高银贵,程爱民,孔皖军,杨柳,罗安昆,薛小渊. 准格尔煤田奥灰水害区域超前治理技术研究. 煤炭技术. 2022(11): 109-112 .
    52. 贺炳伟. 煤矿奥灰水动态监测系统设计及应用. 陕西煤炭. 2022(06): 183-186+210 .
    53. 张培森,董宇航,张晓乐,许大强. 2008—2021年我国煤矿水害事故统计规律分析及预测研究. 煤炭工程. 2022(11): 131-137 .
    54. 虎维岳,赵春虎,吕汉江. 煤层底板水害区域注浆治理影响因素分析与高效布孔方式. 煤田地质与勘探. 2022(11): 134-143 . 本站查看
    55. 于小鸽,吕华东,张德明,吕昌兴,曲林燕. 霄云井田奥陶系灰岩岩溶发育规律研究. 煤矿安全. 2022(12): 22-27 .
    56. 董书宁,刘再斌,程建远,陈宝辉,代振华,李丹. 煤炭智能开采地质保障技术及展望. 煤田地质与勘探. 2021(01): 21-31 . 本站查看
    57. 王皓,董书宁,乔伟,姬亚东,朱开鹏,周振方,宁殿艳,尚宏波. 矿井水害防控远程服务云平台构建与应用. 煤田地质与勘探. 2021(01): 208-216 . 本站查看
    58. 尹尚先,连会青,徐斌,田午子,曹敏,姚辉,孟浩鹏. 深部带压开采:传承与创新. 煤田地质与勘探. 2021(01): 170-181 . 本站查看
    59. 高耀全,方刚,闫兴达. 邢东煤矿深部区域奥灰水害探查治理技术. 煤矿安全. 2021(05): 87-95 .
    60. 姜文浩. 联合注浆在工作面底板水害防治中的应用. 煤炭科技. 2021(04): 83-87 .
    61. 李晓龙. 煤矿井下水砂突涌钻孔封孔技术研发与应用. 煤田地质与勘探. 2021(04): 192-197 . 本站查看
    62. 孟凡丁,许光泉,孙贵,谢治刚. 深埋条件下水平分支孔注浆模拟分析. 绿色科技. 2021(14): 194-198+213 .
    63. 郑士田,马荷雯,姬亚东. 煤层底板水害区域超前治理技术优化及其应用. 煤田地质与勘探. 2021(05): 167-173 . 本站查看
    64. 董书宁. 煤矿安全高效生产地质保障的新技术新装备. 中国煤炭. 2020(09): 15-23 .

    Other cited types(17)

Catalog

    Article Metrics

    Article views (368) PDF downloads (60) Cited by(81)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return