XU Xing, WENG Ling, LI Shiqiang, LIU Guoqiang. The influence of grounding grid on electromagnetic detection of goaf[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 213-219. DOI: 10.3969/j.issn.1001-1986.2019.05.030
Citation: XU Xing, WENG Ling, LI Shiqiang, LIU Guoqiang. The influence of grounding grid on electromagnetic detection of goaf[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 213-219. DOI: 10.3969/j.issn.1001-1986.2019.05.030

The influence of grounding grid on electromagnetic detection of goaf

Funds: 

National Grid Science and Technology Project(52053016000X)

More Information
  • Received Date: August 11, 2018
  • Published Date: October 24, 2019
  • The existence of underground goaf can easily cause tilting and settlement of power towers, which is a major hidden factor in the safe and stable operation of power grid. To detect the mine goaf under the power transmission corridor is of great significance. When there is a grounding grid in the detection area, the grounding grid will have certain influence on the measured value. In this paper, the detection of mine goaf in the presence of a grounding grid is presented. Based on the theoretical analysis, the mathematical model is built, and the simulation model is conducted. The influence of the grounding network on the detection data was analyzed through different detection methods, and the influence rule of the grounding network on the detection data of the gob area was obtained. At the same time, the areas that have large impact on the detection value were divided, and reasonable suggestions were put forward, which can provide reference and guidance for the actual engineering work of goaf detection under the transmission corridor.
  • [1]
    李耀华,李旭. 煤矿采空区的形成及地球物理勘探方法的选择[J]. 资源环境与工程,2014,28(3):332-336.

    LI Yaohua,LI Xu. Formation of coal mine goaf and selection of geophysical exploration methods[J]. Resource Environment and Engineering,2014,28(3):332-336.
    [2]
    岳建华,李志聃. 矿井直流电法勘探中的巷道影响[J]. 煤炭学报,1999,24(1):9-12.

    YUE Jianhua,LI Zhidan. Roadway influence in mine direct current method exploration[J]. Journal of China Coal Society,1999,24(1):9-12.
    [3]
    杨伟俊. 超高密度直流电法勘探反演系统在边坡地质勘察中的应用研究[D]. 北京:中国铁道科学研究院,2013.
    [4]
    陈明生. 关于频率电磁测深几个问题的探讨(二):频率电磁测深探测深度的几个问题分析[J]. 煤田地质与勘探,2012,40(6):67-70.

    CHEN Mingsheng. Discussion on several problems of fre-quency electromagnetic sounding(II):Analysis of several problems in depth of frequency electromagnetic sounding[J]. Coal Geology & Exploration,2012,40(6):67-70.
    [5]
    陈明生. 关于频率电磁测深几个问题的探讨(一):从可控源音频大地电磁测深原理看解释中的问题[J]. 煤田地质与勘探,2012,40(5):63-66.

    CHEN Mingsheng. Discussion on several problems of frequency electromagnetic sounding(I):Viewing the problems in interpretation from the principle of controllable source audio magnetotelluric sounding[J]. Coal Geology & Exploration,2012,40(5):63-66.
    [6]
    倪光正,崔翔,邱捷,等. 工程电磁场原理[M]. 北京:高等教育出版社,2004.
    [7]
    李谦,文习山. 基于安全性的大型接地网均压优化策略[J]. 高压电器,2018,54(6):177-183.

    LI Qian,WEN Xishan.Voltage grading optimization strategy for large grounding grid based on security[J]. High Voltage Apparatus,2018,54(6):177-183.
    [8]
    李谦,文习山,肖磊石,等. 土壤特性对变电站接地网特性参数影响的数值分析[J]. 高电压技术,2013,39(11):2656-2663.

    LI Qian,WEN Xishan,XIAO Leishi,et al. Numerical analysis of influence of soil properties on characteristic parameters of substation grounding grid[J]. High Voltage Technology,2013,39(11):2656-2663.
    [9]
    文刚,齐世举,姜勤波,等. 大地水平分层电导率对架空线缆HEMP响应的影响[J]. 电工技术学报,2016,31(1):91-95.

    WEN Gang,QI Shiju,JIANG Qinbo,et al. Influence of horizontal layered conductivity on HEMP response of overhead cables[J]. Transactions of Electrotechnics Society,2016,31(1):91-95.
    [10]
    王宇,张焕君,黄海新. 基于深度学习的图像语义分割算法综述[J]. 电子技术应用,2019,45(6):23-27.

    WANG Yu,ZHANG Huanjun,HUANG Haixin. A survey of image semantic segmentation algorithms based on deep learning[J]. Application of Electronic Technique,2019,45(6):23-27.
    [11]
    林培民. 两种输电线路杆塔接地网模型研究[J]. 机电工程技术,2017,46(9):119-121.

    LIN Peimin. Research on two kinds of grounding network installation on transmission tower[J]. Engineering Services and M&E Contracting,2017,46(9):119-121.
    [12]
    杨玉波. 地球物理勘探技术在煤矿病害探测中的应用研究[D].北京:中国地质大学(北京),2013.
    [13]
    赵光辉. 高密度电法勘探技术及其应用[J]. 矿产与地质,2006(2):166-168.

    ZHAO Guanghui. High-density electrical exploration tech-nology and its application[J]. Mineral Resources and Geology,2006(2):166-168.
    [14]
    马炳镇. 起伏地形下地面瞬变电磁法三维正演数值模拟研究[J]. 物探与化探,2018,42(4):777-784.

    MA Bingzhen. Numerical simulation of 3D forward modeling of ground transient electromagnetic method in rugged terrain[J]. Geophysical and Geochemical Exploration,2018,42(4):777-784.
    [15]
    LOKE M H,WILKINSON P B, CHAMBERS J E. Parallel computation of optimized arrays for 2-D electrical imaging surveys[J]. Geophysical International Journal,2010,183(3):1302-1315.
  • Cited by

    Periodical cited type(9)

    1. 樊振丽,曹路通,申晨辉,邵远洋. 近距离煤层垂向采空区高静储瞬态充水模式与解危技术. 能源与环保. 2024(05): 1-7 .
    2. 张勃阳,张宇科,黄虎威,林志斌,李亚超. 基于相似模拟试验的顶板导水裂隙带高度及发育形态研究. 河南理工大学学报(自然科学版). 2024(04): 29-38 .
    3. 黄东兴,阳元中. 煤层群下煤层开采对上覆采空区积水影响程度研究. 煤炭技术. 2024(09): 68-71 .
    4. 李金华,郑承先,谷拴成,吴宝林,王雄,宋勇军. 直接顶-基本顶耦合作用下采场顶板断裂力学模型研究与应用. 煤田地质与勘探. 2023(07): 123-129 . 本站查看
    5. 李星亮,黄庆享. 水体下特厚煤层综放开采导水裂隙带高度发育特征研究. 采矿与安全工程学报. 2022(01): 54-61 .
    6. 张兆宏,杨昌武,杨奋飞,王英伟. 煤矿采空塌陷区危险性预测模型构建及其防治措施. 能源与环保. 2022(12): 278-283 .
    7. 张真宁,庹云升,周诗楠,王涛. 老空区下煤炭资源开采覆岩导水裂隙发育规律数值模拟. 科技风. 2020(08): 204-205 .
    8. 杨天艺,秦洪岩. 1930煤矿河道下开采地表沉陷预计分析. 煤炭与化工. 2019(06): 48-50+53 .
    9. 田振焘,邢延团,张同俊. 大采空区强冲击地压条件下低位泄水技术与应用. 煤田地质与勘探. 2019(S1): 70-74 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (90) PDF downloads (15) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return