JIA Huimin, HU Qiujia, QI Kongjun, LIU Chunchun, FAN Bin, HE Jun. Reasons of low yield and stimulation measures for vertical CBM wells in high-rank coal[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 104-110. DOI: 10.3969/j.issn.1001-1986.2019.05.014
Citation: JIA Huimin, HU Qiujia, QI Kongjun, LIU Chunchun, FAN Bin, HE Jun. Reasons of low yield and stimulation measures for vertical CBM wells in high-rank coal[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 104-110. DOI: 10.3969/j.issn.1001-1986.2019.05.014

Reasons of low yield and stimulation measures for vertical CBM wells in high-rank coal

Funds: 

National Science and Technology Major Project(2017ZX05064)

More Information
  • Received Date: March 11, 2019
  • Published Date: October 24, 2019
  • The CBM production is usually low and development effect is poor in China, which are mainly due to the poor adaptability of the stimulation measures to the geological conditions. This article, based on the low-yield reasons for vertical CBM wells in Zhengzhuang block in southern Qinshui basin, puts forth corresponding stimulation measures, analyzes the mechanism and the geological adaptability, optimizes the parameters of specific stimulation measures and carries out pilot test. The research and practices show that in deeply buried area, fractures are difficult to form, and re-fracturing technology can make the fracture turn and increase the crack length, which has better stimulation. In order to fully release the stress and increase the deflection degree of the fractures, the extraction time before re-fracturing should be at least 1 000 d, and the amount of proppants should be reduced in the fracturing operation. It is important for the fine sand to be added in sections, in order to plug the fractures made by former fracturing. When the cataclastic coal or broken coal develops overall in coal seams, hydraulic-fractures cannot extend far to have high productions, and the implement of indirect roof-fracturing improves the development performance. And the optimized parameters are as follows:the distance between the coal seam and the new perforation interval in the roof formation is between 0.5 m and 1.5 m. The injection rate of fracturing fluid is better between 5 m3/min and 5.5 m3/min and the better perforation interval is between 1.5 m and 2 m. While the fracturing fluid volume for per-perforation-interval is better between 200 m3/m and 300 m3/m. In natural greatly developed fractures zones, the implementation of ball-off fracturing can dramatically improve the production, which is suitable for the wells having falling fracturing pressure curves and the values below15 MPa. And the optimized water production rate per day is between 2 m3 and 5 m3. The stimulation measure is that before ball-off fracturing, a small pre-fracturing with fine sand is necessary in order to block the original fractures and to improve injection pressure to create new fractures. This paper has significant introduction meaning on the reason analysis and the stimulation measures for high rank coalbed methane reservoir.
  • [1]
    吴雅琴,邵国良,徐耀辉,等. 煤层气开发地质单元划分及开发方式优化:以沁水盆地郑庄区块为例[J]. 岩性油气藏,2016,28(6):125-133.

    WU Yaqin,SHAO Guoliang,XU Yaohui,et al. Geological unit division and development model optimization of coalbed methane:A case study from Zhengzhuang block in Qinshui basin[J]. Lithologic Reservoirs,2016,28(6):125-133.
    [2]
    朱庆忠,杨延辉,王玉婷,等. 高阶煤层气高效开发工程技术优选模式及其应用[J]. 天然气工业,2017,37(10):27-34.

    ZHU Qingzhong,YANG Yanhui,WANG Yuting,et al. Optimal geological-engineering models for highly efficient CBM gas development and their application[J]. Natural Gas Industry,2017,37(10):27-34.
    [3]
    张建国,刘忠,姚红星,等. 沁水煤层气田郑庄区块二次压裂增产技术研究[J]. 煤炭科学技术,2016,44(5):59-63.

    ZHANG Jianguo,LIU Zhong,YAO Hongxing,et al. Study on production increased technology with secondary hydraulic fracturing in Zhengzhuang block of Qinshui coalbed methane field[J]. Coal Science and Technology,2016,44(5):59-63.
    [4]
    赵武鹏,刘春春,申兴伟,等. 郑庄区块煤层气低产井增产技术研究[J]. 石油钻采工艺,2017,39(4):491-494.

    ZHAO Wupeng,LIU Chunchun,SHEN Xingwei,et al. Study on the stimulation technologies for low-yield CBM wells in Zhengzhuang block[J]. Oil Drilling & Production Technology,2017,39(4):491-494.
    [5]
    张义,鲜保安,孙粉锦,等. 煤层气低产井低产原因及增产改造技术[J]. 天然气工业,2010,30(6):55-59.

    ZHANG Yi,XIAN Bao'an,SUN Fenjin,et al. Reason analysis and stimulation measures of low coalbed methane gas production wells[J]. Natural Gas Industry,2010,30(6):55-59.
    [6]
    韩保山. 低渗煤层压裂机理及地面煤层气抽采应用[J]. 煤田地质与勘探,2016,44(3):25-29.

    HAN Baoshan. Research on fracturing mechanism of low permeability coal seam and application of surface CBM drainage[J]. Coal Geology & Exploration,2016,44(3):25-29.
    [7]
    路艳军,杨兆中,SHELEPOV V V,等. 煤层气储层压裂现状及展望[J]. 煤炭科学技术,2017,45(6):73-84.

    LU Yanjun,YANG Zhaozhong,SHELEPOV V V,et al. Status and prospects of coalbed methane reservoir fracturing[J]. Coal Science and Technology,2017,45(6):73-84.
    [8]
    王建利,陈冬冬,贾秉义. 韩城矿区碎软煤层顶板梳状孔水力压裂瓦斯抽采工程实践[J]. 煤田地质与勘探,2018,46(4):17-21.

    WANG Jianli,CHEN Dongdong,JIA Bingyi. Practice of gas drainage by hydraulic fracturing of roof pectination boreholes in broken soft coal seam in Hancheng mining area[J]. Coal Geology & Exploration,2018,46(4):17-21.
    [9]
    王理国,唐兆青,李玉魁,等. 煤层气井层内转向压裂技术研究与应用[J]. 煤田地质与勘探,2018,46(2):8-14.

    WANG Liguo,TANG Zhaoqing,LI Yukui,et al. Research and application of deflection fracturing technology in coalbed methane well[J]. Coal Geology & Exploration,2018,46(2):8-14.
    [10]
    杨宇,林璠,曹煜,等. 煤层气直井间接压裂施工的先导地质分析[J]. 煤田地质与勘探,2016,44(3):46-50.

    YANG Yu,LIN Fan,CAO Yu,et al. Pilot geological analysis of indirect fracturing in vertical CBM well[J]. Coal Geology & Exploration,2016,44(3):46-50.
    [11]
    孟召平,田永东,李国富. 沁水盆地南部地应力场特征及其研究意义[J]. 煤炭学报,2010,35(6):975-981.

    MENG Zhaoping,TIAN Yongdong,LI Guofu. Character-istics of in-situ stress field in southern Qinshui basin and its research significance[J]. Journal of China Coal Society,2010,35(6):975-981.
    [12]
    房璐,王硕,徐珂,等. 山西沁水盆地现今地应力特征[J]. 断块油气田,2018,25(4):413-418.

    FANG Lu,WANG Shuo,XU Ke,et al. Characteristics of current in-situ stress of Qinshui basin[J]. Fault-Block Oil & Gas Field,2018,25(4):413-418.
    [13]
    张帆,马耕,刘晓,等. 煤岩起裂压力和水力压裂裂缝扩展机制实验研究[J]. 煤田地质与勘探,2017,45(6):84-89.

    ZHANG Fan,MA Geng,LIU Xiao,et al. Experimental study on initiation pressure and mechanism of fracture propagation of hydraulic fracturing in coal and rock mass[J]. Coal Geology & Exploration,2017,45(6):84-89.
    [14]
    胡秋嘉,李梦溪,乔茂坡,等. 沁水盆地南部高阶煤煤层气井压裂效果关键地质因素分析[J]. 煤炭学报,2017,42(6):1506-1516.

    HU Qiujia,LI Mengxi,QIAO Maopo,et al. Analysis of key geologic factors of fracturing effect of CBM wells for high-rank coal in southern Qinshui basin[J]. Journal of China Coal Society,2017,42(6):1506-1516.
    [15]
    赵金洲,任岚,胡永全,等. 裂缝性地层水力裂缝非平面延伸模拟[J]. 西南石油大学学报(自然科学版),2012,34(4):174-180.

    ZHAO Jinzhou,REN Lan,HU Yongquan,et al. Numerical simulation on non-planar propagation of hydraulic fracture in naturally fractured formations[J]. Journal of Southwest Petroleum University(Science & Technology Edition),2012,34(4):174-180.
    [16]
    程远方,吴百烈,袁征,等. 煤层气井水力压裂"T" 型缝延伸模型的建立及应用[J]. 煤炭学报,2013,38(8):1430-1434.

    CHENG Yuanfang,WU Bailie,YUAN Zheng,et al. Establishment and application of "T" shape fracture propagation model in hydraulic fracturing of methane well[J]. Journal of China Coal Society,2013,38(8):1430-1434.
    [17]
    陈同刚,汪启年,朱将波,等. 煤层及其顶、底板岩石力学性质对水力压裂裂缝延伸的控制[J]. 华东地质,2018,39(3):212-217.

    CHEN Tonggang,WANG Qinian,ZHU Jiangbo,et al. Control of mechanical properties of coal seam and its roof and floor rocks over the crack extension during hydraulic fracturing[J]. East China Geology,2018,39(3):212-217.
  • Related Articles

    [1]ZHANG Cong, LI Mengxi, FENG Shuren, HU Qiujia, QIAO Maopo, WU Dingquan, YU Jiasheng, LI Kexin. Reservoir properties and gas production difference between No.15 coal and No.3 coal in Zhengzhuang Block, southern Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(9): 145-153. DOI: 10.12363/issn.1001-1986.21.12.0816
    [2]LIU Shiqi, FANG Huihuang, SANG Shuxun, HU Qiujia, DUAN Weiying, JIA Huimin, MAO Chonghao. Numerical simulation of gas production for multilayer drainage coalbed methane vertical wells in southern Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(6): 20-31. DOI: 10.12363/issn.1001-1986.22.01.0008
    [3]LI Guofu, ZHANG Wei, LI Meng, PAN Jienan, LIU Liangliang, CHEN Zhaoying, ZHANG Yongcheng, BAI Yang. Gas content and productivity controlling factors of coal reservoir in Sijiazhuang area, Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(3): 146-155. DOI: 10.12363/issn.1001-1986.21.12.0756
    [4]LI Yangyang, LI Xianqing, ZHANG Xueqing, XIAO Xianming, YU Zhenfeng, WANG Baoyu. Characteristics of shale gas reservoir in Upper Paleozoic coal measures in Yangquan Block, Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(2): 142-151. DOI: 10.3969/j.issn.1001-1986.2021.02.018
    [5]JIA Huimin, HU Qiujia, FAN Bin, MAO Chonghao, ZHANG Qing. Causes for low CBM production of vertical wells and efficient development technology in northern Zhengzhuang Block in Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(2): 34-42. DOI: 10.3969/j.issn.1001-1986.2021.02.005
    [6]YAO Yanbin, WANG Hui, YANG Yanhui, LIU Dameng, LU Xiuqin, CAO Lutong. Evaluation of the hydro-fracturing potential for coalbed methane reservoir: A case study of Zhengzhuang CBM field[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(1): 119-129. DOI: 10.3969/j.issn.1001-1986.2021.01.012
    [7]YI Yongxiang, TANG Shuheng, ZHANG Songhang, YAN Xinlu, WANG Kaifeng, DANG Feng. Analysis on the type of reservoir pressure drop and drainage control of coalbed methane well in the southern block of Shizhuang[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 118-126. DOI: 10.3969/j.issn.1001-1986.2019.05.016
    [8]XUE Haifei, ZHU Guanghui, WANG Wei, LU Xiaoxia, WANG Minghao, WANG Yanbin. Analysis and application of key influencing factors of CBM well fracturing effects in Shizhuang area, Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 76-81. DOI: 10.3969/j.issn.1001-1986.2019.04.012
    [9]FENG Shuren, ZHANG Cong, ZHANG Jinxiao, LIU Zhong, CUI Xinrui, CHAO Weiwei. Gas-water differentiation characteristics of CBM reservoirs in Xiadian block, Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 129-134. DOI: 10.3969/j.issn.1001-1986.2018.05.020
    [10]LIU Kang, CAO Daiyong, LIN Zhongyue, LI Jian. Subsidence history of central-northern Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(2): 8-11,15. DOI: 10.3969/j.issn.1001-1986.2013.02.002
  • Cited by

    Periodical cited type(26)

    1. 郭晶,张建国,贾慧敏,王琪,何珊,范秀波. 煤层气直井储层堵塞原因分析及解堵措施应用. 中国煤层气. 2024(03): 20-24 .
    2. 张晨,何萌,肖宇航,刘忠,韩晟,鲁秀芹,王子涵,吴浩宇,张倩倩. 影响煤层气单支压裂水平井产量关键要素及提产对策——以郑庄区块开发实践为例. 煤炭科学技术. 2024(10): 158-168 .
    3. 韩文龙,王延斌,李勇,倪小明,吴翔,赵石虎. 煤层气低产井区增产改造地质靶区优选方法与应用. 洁净煤技术. 2023(S2): 780-788 .
    4. 姜维,吴恒,王惠. 新疆准南地区煤层气井低产原因与增产措施研究. 中国煤层气. 2023(03): 9-12 .
    5. 李勇,胡海涛,王延斌,韩文龙,吴翔,吴鹏,刘度. 煤层气井低产原因及二次改造技术应用分析. 矿业科学学报. 2022(01): 55-70 .
    6. 张伟,周梓欣. 后峡盆地中部煤层气资源量预测. 内蒙古煤炭经济. 2022(08): 55-57 .
    7. 贾慧敏,胡秋嘉,张聪,张文胜,刘春春,毛崇昊,王岩. 煤层气双层合采直井产能预测及排采试验——以沁水盆地郑庄西南部为例. 油气藏评价与开发. 2022(04): 657-665 .
    8. 刘晓,崔彬,吴展. 煤层气井堵塞型递减原因分析及治理——以延川南煤层气田为例. 油气藏评价与开发. 2022(04): 626-632 .
    9. 胡秋嘉,贾慧敏,张聪,樊彬,毛崇昊,张庆. 高阶煤煤层气井稳产时间预测方法及应用——以沁水盆地南部樊庄-郑庄为例. 煤田地质与勘探. 2022(09): 137-144 . 本站查看
    10. 侯安琪. 郑庄区块二次压裂煤层气井低产原因及改进措施. 煤. 2021(03): 16-19 .
    11. 李浩,梁卫国,李国富,白建平,王建美,武鹏飞. 碎软煤层韧性破坏-渗流耦合本构关系及其间接压裂工程验证. 煤炭学报. 2021(03): 924-936 .
    12. 信凯,季长江,魏若飞. 晋城矿区郑庄深部煤层L型水平井增产改造技术. 煤. 2021(04): 13-15+19+27 .
    13. 贾慧敏,胡秋嘉,樊彬,毛崇昊,张庆. 沁水盆地郑庄区块北部煤层气直井低产原因及高效开发技术. 煤田地质与勘探. 2021(02): 34-42 . 本站查看
    14. 田跃儒,张双双,郑晓斌. 柳林区块煤层气压裂液评价及伤害机理研究. 煤炭技术. 2021(05): 69-71 .
    15. 赵景辉,高玉巧,陈贞龙,郭涛,高小康. 鄂尔多斯盆地延川南区块深部地应力状态及其对煤层气开发效果的影响. 中国地质. 2021(03): 785-793 .
    16. 孙晗森. 我国煤层气压裂技术发展现状与展望. 中国海上油气. 2021(04): 120-128 .
    17. 彭丽莎,张毅敏,熊威,赵丹,罗凯. 四川筠连地区高阶煤煤层气井解堵技术及应用. 煤田地质与勘探. 2021(05): 132-138 . 本站查看
    18. 程泽虎,袁航,匡玉凤. 织金区块煤层气排采制度对产气特征的影响. 中国煤层气. 2021(05): 14-18 .
    19. 原红超,贾慧敏,王汉雄,安玉敏,闻伟,蒋世民. 煤层气井产出水固体颗粒过滤装置及应用. 中国煤层气. 2020(03): 34-36 .
    20. 贾慧敏,胡秋嘉,毛建伟,毛崇昊,刘春春,张庆,刘昌平. 高阶煤煤层气井产量递减规律及影响因素. 煤田地质与勘探. 2020(03): 59-64+74 . 本站查看
    21. 王镜惠,梅明华,刘娟,王华军. 煤储层酸化增渗影响因素及酸化压裂选井原则. 中国煤炭地质. 2020(05): 12-14+26 .
    22. 李莹,郑瑞,罗凯,朱延茗,张毅敏. 筠连地区煤层气低产低效井成因及增产改造措施. 煤田地质与勘探. 2020(04): 146-155 . 本站查看
    23. 王镜惠,梅明华,刘娟,王华军. 基于突变理论的煤层气井产量预测研究. 当代化工. 2020(08): 1788-1792 .
    24. 王镜惠,尹宇寒,梅明华,刘娟,王华军. 高煤阶煤储层解吸曲线定量表征及解吸参数研究. 地质与勘探. 2020(05): 1096-1104 .
    25. 安省蓬. 煤层气低产井原因及下步改进方案研究. 现代盐化工. 2020(05): 53-54 .
    26. 刘子雄. 基于微地震向量扫描的煤层气井天然裂缝监测. 煤田地质与勘探. 2020(05): 204-210 . 本站查看

    Other cited types(6)

Catalog

    Article Metrics

    Article views (191) PDF downloads (40) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return