LI Heng, HE Shiming, TANG Ming, LI Ning, YANG Pei, ZHANG Zhen. Instability mechanism and anti-sloughing drilling fluid technique for deep coal seam of Tarim basin[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 212-218. DOI: 10.3969/j.issn.1001-1986.2019.04.032
Citation: LI Heng, HE Shiming, TANG Ming, LI Ning, YANG Pei, ZHANG Zhen. Instability mechanism and anti-sloughing drilling fluid technique for deep coal seam of Tarim basin[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 212-218. DOI: 10.3969/j.issn.1001-1986.2019.04.032

Instability mechanism and anti-sloughing drilling fluid technique for deep coal seam of Tarim basin

Funds: 

National Natural Science Foundation of China(51774247,51574202)

More Information
  • Received Date: July 10, 2018
  • Published Date: August 24, 2019
  • In view of the complicated problems of drilling fluid leakage and hole collapse during the drilling of deep coalbed in Tarim basin, the microstructure and physical and chemical properties of coal were tested by vitrinite reflectance analysis, X ray diffraction and scanning electron microscope, and the mechanism of coal seam instability was confirmed. The fixed carbon content of the coal exceeds 60%, the vitrinite reflectance is greater than 1.1%, and coal have high degree of coalification, is brittle and easy to break. The total amount of clay mineral is less than 25%, and there is no strong water-sensitive mineral montmorillonite in clay. The cleat of coal is reticulated, whose width is mainly concentrated in 1-10 μm, easy to leak off. The instability type of coal and rocks was judged comprehensively as mechanical instability. Taking the microstructure of coal as the object and combining with the size distribution of drilling fluid materials, the asphaltic blocking agent was optimized and the asphaltic polysulfonate anti-collapse drilling fluid for coal seam was designed. Its performance test shows that the asphaltic polysulfonate anti-collapse drilling fluid has low filtration loss and thin mud cake, can effectively block most of coal cleats, reduce drilling fluid invasion, and prevent coal seam collapse. The research results can provide technical support for safe and efficient drilling in the deep coal seam in Tarim basin.
  • [1]
    唐跃. 中国煤层气资源与前景[C]//中国地质学会2013年学术年会论文摘要汇编. 北京:中国地质学会,2013:505-506.
    [2]
    李小刚,杨兆中,梁知,等. 深埋煤层气藏水力压裂增产技术探讨[J]. 天然气与石油,2011,29(6):46-48.

    LI Xiaogang,YANG Zhaozhong,LIANG Zhi,et al. Study on hydraulic fracturing stimulation technique for deep buried CBM reservoir[J]. Natural Gas and Oil,2011,29(6):46-48.
    [3]
    CLARK J. CERA:Natural gas poised to overtake oil use by 2025[J]. Oil & Gas Journal,2004,102(9):20-21.
    [4]
    GUNTER W D,MAVOR M J,ROBINSON J R. CO2 storage and enhanced methane production:Field testing at Fenn-Big Valley,Alberta,Canada,with application[J]. Greenhouse Gas Control Technologies,2005:413-421.
    [5]
    朱庆忠,杨延辉,左银卿,等. 中国煤层气开发存在的问题及破解思路[J]. 天然气工业,2018,38(4):96-100.

    ZHU Qingzhong,YANG Yanhui,ZUO Yinqing,et al. CBM development in China:Challenges and solutions[J]. Natural Gas Industry,2018,28(4):96-100.
    [6]
    孙延明,张遂安,杨红军,等. 影响煤层气钻井工程的工程地质因素分析[J]. 中国煤炭地质,2016,28(12):62-66.

    SUN Yanming,ZHANG Sui'an,YANG Hongjun,et al. Analysis of engineering geological factors impacting CBM well drilling engineering[J]. Coal Geology of China,2016,28(12):62-66.
    [7]
    冯永超,武星星,党冰华,等. 泾河油田延安组煤层特性与井壁失稳机理[J]. 钻井液与完井液,2015,32(6):46-49.

    FENG Yongchao,WU Xingxing,DANG Binghua,et al. Coal seam characteristics and borehole instability mechanism in Yan'an Formation of Jinghe oilfield[J]. Drilling Fluid & Completion Fluid,2015,32(6):46-49.
    [8]
    孙正财,刘向君,梁利喜,等. 煤层气井割理煤岩井壁稳定性影响因素分析[J]. 煤炭科学技术,2018,46(4),117-122.

    SUN Zhengcai,LIU Xiangjun,LIANG Lixi,et al. Analysis om impact factors of borehole wall stability of coalbed methane well[J]. Coal Science and Technology,2018,46(4),117-122.
    [9]
    SHI Zhijun,ZHAO Yongzhe,QI Hongjun,et al. Research and application of drilling technology of extended-reach horizontally-intersected well used to extract coalbed methane[J]. Procedia Earth & Planetary Science,2011,3:446-454.
    [10]
    陆小霞,黄文辉,王佳旗,等. 沁水盆地柿庄北深部煤层煤体结构发育特征[J]. 煤田地质与勘探,2014,42(3):8-11.

    LU Xiaoxia,HUANG Wenhui,WANG Jiaqi,et al. The development characteristics of deep coal structure in northern Shizhuang area[J]. Coal Geology & Exploration,2014,42(3):8-11.
    [11]
    李文华,白向飞,杨金和,等. 烟煤镜质组平均最大反射率与煤种之间的关系[J]. 煤炭学报,2006,31(3):342-345.

    LI Wenhua,BAI Xiangfei,YANG Jinhe,et al. Cor-respondence between mean maximum reflectance of vitrinite and classification of bituminous coals[J]. Journal of China Coal Society,2006,31(3):342-345.
    [12]
    金振奎,王春生,王濮,等. 华北地区石炭系-二叠系煤岩储集性能的控制因素[J]. 石油勘探与开发,2007,34(5):534-540.

    JIN Zhenkui,WANG Chunsheng,WANG Pu,et al. Controlling factors of reservoir ability of Carboniferous and Permian coal rocks,North China[J]. Petroleum Exploration and Development,2007,34(5):534-540.
    [13]
    YAO Boyuan,LI Deping. Features and correct application of coal vitrinite reflectance index[J]. Journal of Coal Science & Engineering,2012,18(4):400-406.
    [14]
    中国煤炭工业协会,全国煤炭标准化技术委员会. 镜质体反射率的煤化程度分级:MT/T 1158-2011[S]. 北京:煤炭工业出版社,2011.
    [15]
    SMITH J R,SMITH J W. A relationship between the carbon and hydrogen content of coals and their vitrinite reflectance[J]. International Journal of Coal Geology,2007,70(1):79-86.
    [16]
    MARINO J,MARSHAK S,MASTERLERZ M. Evidence for stratigraphically controlled paleogeotherms in the Illinois basin based on vitrinite-reflectance analysis:Implications for interpreting coal-rank anomalies[J]. AAPG Bulletin,2015,99(10):1803-1825.
    [17]
    金新. 煤矿井下定向钻进防塌乳液研究[J]. 煤田地质与勘探,2017,45(1):158-161.

    JIN Xin. Research on collapse prevention emulsions used in directional drilling in coal mine[J]. Coal Geology & Exploration,2017,45(1):158-161.
  • Cited by

    Periodical cited type(26)

    1. 郭晶,张建国,贾慧敏,王琪,何珊,范秀波. 煤层气直井储层堵塞原因分析及解堵措施应用. 中国煤层气. 2024(03): 20-24 .
    2. 张晨,何萌,肖宇航,刘忠,韩晟,鲁秀芹,王子涵,吴浩宇,张倩倩. 影响煤层气单支压裂水平井产量关键要素及提产对策——以郑庄区块开发实践为例. 煤炭科学技术. 2024(10): 158-168 .
    3. 韩文龙,王延斌,李勇,倪小明,吴翔,赵石虎. 煤层气低产井区增产改造地质靶区优选方法与应用. 洁净煤技术. 2023(S2): 780-788 .
    4. 姜维,吴恒,王惠. 新疆准南地区煤层气井低产原因与增产措施研究. 中国煤层气. 2023(03): 9-12 .
    5. 李勇,胡海涛,王延斌,韩文龙,吴翔,吴鹏,刘度. 煤层气井低产原因及二次改造技术应用分析. 矿业科学学报. 2022(01): 55-70 .
    6. 张伟,周梓欣. 后峡盆地中部煤层气资源量预测. 内蒙古煤炭经济. 2022(08): 55-57 .
    7. 贾慧敏,胡秋嘉,张聪,张文胜,刘春春,毛崇昊,王岩. 煤层气双层合采直井产能预测及排采试验——以沁水盆地郑庄西南部为例. 油气藏评价与开发. 2022(04): 657-665 .
    8. 刘晓,崔彬,吴展. 煤层气井堵塞型递减原因分析及治理——以延川南煤层气田为例. 油气藏评价与开发. 2022(04): 626-632 .
    9. 胡秋嘉,贾慧敏,张聪,樊彬,毛崇昊,张庆. 高阶煤煤层气井稳产时间预测方法及应用——以沁水盆地南部樊庄-郑庄为例. 煤田地质与勘探. 2022(09): 137-144 . 本站查看
    10. 侯安琪. 郑庄区块二次压裂煤层气井低产原因及改进措施. 煤. 2021(03): 16-19 .
    11. 李浩,梁卫国,李国富,白建平,王建美,武鹏飞. 碎软煤层韧性破坏-渗流耦合本构关系及其间接压裂工程验证. 煤炭学报. 2021(03): 924-936 .
    12. 信凯,季长江,魏若飞. 晋城矿区郑庄深部煤层L型水平井增产改造技术. 煤. 2021(04): 13-15+19+27 .
    13. 贾慧敏,胡秋嘉,樊彬,毛崇昊,张庆. 沁水盆地郑庄区块北部煤层气直井低产原因及高效开发技术. 煤田地质与勘探. 2021(02): 34-42 . 本站查看
    14. 田跃儒,张双双,郑晓斌. 柳林区块煤层气压裂液评价及伤害机理研究. 煤炭技术. 2021(05): 69-71 .
    15. 赵景辉,高玉巧,陈贞龙,郭涛,高小康. 鄂尔多斯盆地延川南区块深部地应力状态及其对煤层气开发效果的影响. 中国地质. 2021(03): 785-793 .
    16. 孙晗森. 我国煤层气压裂技术发展现状与展望. 中国海上油气. 2021(04): 120-128 .
    17. 彭丽莎,张毅敏,熊威,赵丹,罗凯. 四川筠连地区高阶煤煤层气井解堵技术及应用. 煤田地质与勘探. 2021(05): 132-138 . 本站查看
    18. 程泽虎,袁航,匡玉凤. 织金区块煤层气排采制度对产气特征的影响. 中国煤层气. 2021(05): 14-18 .
    19. 原红超,贾慧敏,王汉雄,安玉敏,闻伟,蒋世民. 煤层气井产出水固体颗粒过滤装置及应用. 中国煤层气. 2020(03): 34-36 .
    20. 贾慧敏,胡秋嘉,毛建伟,毛崇昊,刘春春,张庆,刘昌平. 高阶煤煤层气井产量递减规律及影响因素. 煤田地质与勘探. 2020(03): 59-64+74 . 本站查看
    21. 王镜惠,梅明华,刘娟,王华军. 煤储层酸化增渗影响因素及酸化压裂选井原则. 中国煤炭地质. 2020(05): 12-14+26 .
    22. 李莹,郑瑞,罗凯,朱延茗,张毅敏. 筠连地区煤层气低产低效井成因及增产改造措施. 煤田地质与勘探. 2020(04): 146-155 . 本站查看
    23. 王镜惠,梅明华,刘娟,王华军. 基于突变理论的煤层气井产量预测研究. 当代化工. 2020(08): 1788-1792 .
    24. 王镜惠,尹宇寒,梅明华,刘娟,王华军. 高煤阶煤储层解吸曲线定量表征及解吸参数研究. 地质与勘探. 2020(05): 1096-1104 .
    25. 安省蓬. 煤层气低产井原因及下步改进方案研究. 现代盐化工. 2020(05): 53-54 .
    26. 刘子雄. 基于微地震向量扫描的煤层气井天然裂缝监测. 煤田地质与勘探. 2020(05): 204-210 . 本站查看

    Other cited types(6)

Catalog

    Article Metrics

    Article views (149) PDF downloads (28) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return