YAO Jianye, ZHANG Shan, HAO Guoqiang. Slope stability evaluation based on set pair cloud model[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(1): 162-167. DOI: 10.3969/j.issn.1001-1986.2019.01.025
Citation: YAO Jianye, ZHANG Shan, HAO Guoqiang. Slope stability evaluation based on set pair cloud model[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(1): 162-167. DOI: 10.3969/j.issn.1001-1986.2019.01.025

Slope stability evaluation based on set pair cloud model

More Information
  • Received Date: December 31, 2017
  • Published Date: February 24, 2019
  • When the set pair analysis is applied to evaluate slope stability, the connection degree is usually decided by linear function, which can't reflect the actual conditions of the engineering project objectively and comprehensively and neglect the system randomness. The set pair analysis theory is improved by application of cloud theory which is superior in dealing with the connection degree and set pair analysis-cloud model of slope stability evaluation is established. In this model, the weight matrix is obtained by using the cloud theory to improve the AHP, and the evaluation matrix is obtained by combining with the connection degree evaluation matrix. Then the cloud model of the result of slope stability is generated, in turn the evaluation results and their visual cloud figures are obtained. The X-cloud generator can be used to calculate the probability of different grades. The model was applied in slope engineering, comparative analysis was carried out for the existing models and engineering practice to verify the veracity of the model, and the stability of different slopes was ranked. The model combines the advantages of the cloud theory and set pair analysis, considers fully the randomness of the system, provides a scientific and accurate method for the slope stability evaluation.
  • [1]
    王新民,康虔,秦健春,等. 层次分析法-可拓学模型在岩质边坡稳定性安全评价中的应用[J]. 中南大学学报(自然科学版),2013,44(6):2455-2462.

    WANG Xinmin,KANG Yu,QIN Jianchun,et al. Application of AHP-extenics model to safety evaluation of rock slope stabil-ity[J]. Journal of Central South University(Science and Technology),2013,44(6):2455-2462.
    [2]
    薛新华,张我华,刘红军. 基于遗传算法和模糊神经网络的边坡稳定性评价[J]. 岩土力学,2007,28(12):2643-2648.

    XUE Xinhua,ZHANG Wohua,LIU Hongjun. Evaluation of slope stability based on genetic algorithm and fuzzy neural network[J]. Rock and Soil Mechanics,2007,28(12):2643-2648.
    [3]
    徐飞,徐卫亚,刘造保,等. 基于PSO-PP的边坡稳定性评价[J]. 岩土工程学报,2011,33(11):1708-1713.

    XU Fei,XU Weiya,LIU Zaobao,et al. Evaluation of slope stability based on genetic algorithm and fuzzy neural network[J]. 2011,33(11):1708-1713.
    [4]
    赵军,宋扬. 改进熵权-正态云模型在边坡稳定性评价中的应用[J]. 水电能源科学,2016,34(4):120-122.

    ZHAO Jun,SONG Yang. Slope stability evaluation based on improved entropy weight-cloud model[J]. Water Resources and Power,2016,34(4):120-122.
    [5]
    张丽,陈剑平,肖云华,等. 基于遗传算法的边坡稳定性分析[J]. 煤田地质与勘探,2008,36(5):42-44.

    ZHANG Li,CHEN Jianping,XIAO Yunhua,et al. GA-based slope stability analysis[J]. Coal Geology & Exploration,2008, 36(5):42-44.
    [6]
    唐睿旋,晏鄂川,唐薇. 基于粗糙集和BP神经网络的滑坡易发性评价[J]. 煤田地质与勘探,2017,45(6):129-138.

    TANG Ruixuan,YAN Echuan,TANG Wei. Landslide susceptibility evaluation based on rough set and back-propagation neural network[J]. Coal Geology & Exploration,2017,45(6):129-138.
    [7]
    王涛,陈建生,王婷. 熵权-集对分析模型探测堤坝渗漏[J]. 岩土工程学报,2014,36(11):2136-2143.

    WANG Tao,CHEN Jiansheng,WANG Ting. Entropy weight-set pair analysis(SPA) for dam leakage detection[J]. Chinese Journal of Geotechnical Engineering,2014,36(11):2136-2143.
    [8]
    汪明武,李丽,金菊良. 开采建筑物损坏的集对分析——可变模糊集综合评价模型[J]. 煤田地质与勘探,2008,36(3):39-41.

    WANG Mingwu,LI Li,JIN Juliang. Vehicle set pair analysis of damaged mining structure:Variable fuzzy set comprehensive evaluation model[J]. Coal Geology & Exploration,2008,36(3):39-41.
    [9]
    赵克勤. 集对分析及其初步应用[M]. 浙江:浙江科学技术出版社,2000.
    [10]
    李德毅,杜鹢. 不确定性人工智能[M]. 北京:国防工业出版社,2005.
    [11]
    刘小平. 蒙东地区露天矿边坡稳定性影响因子与敏感度分析[J]. 煤田地质与勘探,2014,42(3):74-77.

    LIU Xiaoping. Influence factor and sensitivity analysis of open-pit slope stability in Mengdong area[J]. Coal Geology & Exploration,2014,42(3):74-77.
    [12]
    ZHANG C L,LIU L,WANG C. Stability analysis of side slope under normal and rainfall conditions[J]. Applied Mechanics and Materials,2013(275/276/277):1383-1388.
    [13]
    ZHU H,ZHANG L M,XIAO T,et al. Enhancement of slope stability by vegetation considering uncertainties in root distribution[J]. Computers and Geotechnics,2016(2):150-158.
    [14]
    叶万军,杨更社. 黄土高边坡稳定性评价的改进可拓工程法[J]. 煤田地质与勘探,2007,35(6):47-50.

    YE Wanjun,YANG Gengshe. A method study for stability assessment of loess slope of cut based on developed topology[J]. Coal Geology & Exploration,2007,35(6):47-50.
    [15]
    王宇,苏生瑞,余宏明. 基于稳定性耦合分析法的余王扁边坡稳定性分析[J]. 煤田地质与勘探,2010,38(5):50-54.

    WANG Yu,SU Shengrui,YU Hongming. Yu Wang Bian slope stability analysis based on coupled analysis method[J]. Coal Geology & Exploration,2010,38(5):50-54.
    [16]
    薛黎明,龚爽,崔超群,等. 主客观权重相结合的湖南省矿产资源可持续力综合评价[J]. 中国矿业,2015,24(9):44-49.

    XUE Liming,GONG Shuang,CUI Chaoqun,et al. Sustainable power comprehensive evaluation of hunan mineral resources combining subjective weight with objective weight[J]. China Mining Magazine,2015,24(9):44-49.
    [17]
    张秋文,章永志,钟鸣. 基于云模型的水库诱发地震风险多级模糊综合评价[J]. 水利学报,2014,45(1):87-95.

    ZHANG Qiuwen,ZHANG Yongzhi,ZHONG Ming. A cloud model based approach for multi-hierarchy fuzzy comprehensive evaluation of reservoir-induced seismic risk[J]. Journal of Hydraulic Engineering,2014,45(1):87-95.
    [18]
    丁丽宏. 基于改进的灰关联分析和层次分析法的边坡稳定性研究[J]. 岩土力学,2011,32(11):3437-3441.

    DING Lihong. Research on estimation of slope stability based on improved grey correlation analysis and analytic hierarchy process[J]. Rock and Soil Mechanics,2011,32(11):3437-3441.
    [19]
    赵建军,贺宇航,黄润秋,等. 基于因子分析法的边坡稳定性评价指标权重[J]. 西南交通大学学报,2015,50(2):325-330.

    ZHAO Jianjun,HE Yuhang,HUANG Runqiu,et al. Weights of slope stability evaluation indexes based on factor analysis method[J]. Journal of Southwest Jiaotong University,2015, 50(2):325-330.
  • Related Articles

    [1]WANG Jian, XU Jiafang, ZHAO Mifu, WANG Bowen, WANG Yahua, CHEN Jie, WANG Xiaohui, YANG Gang, MA Tengfei. Prediction of crack width of drilling fluid leakage based on neural network[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(9): 81-88. DOI: 10.12363/issn.1001-1986.23.05.0240
    [2]YANG Dongdong, ZHAO Jiangpeng, GAO Xiaoliang. Test of near-horizontal drilling hydraulic reverse circulation coring in leakage formation[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(5): 262-268. DOI: 10.3969/j.issn.1001-1986.2020.05.033
    [3]CAO Xiaoyi, LIU Xiaoping, TIAN Yanzhe. Evaluation on influence of repeated coal mining on the stability and leakage of irrigation canal[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(4): 93-98. DOI: 10.3969/j.issn.1001-1986.2018.04.015
    [4]JIN Xin. Study on electric field component imaging of leakage in pipeline using GPR[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(2): 159-163. DOI: 10.3969/j.issn.1001-1986.2018.02.024
    [5]YANG Yu, TIAN Huijun, ZHANG Hao, SUN Hansen, CHEN Wangang. Solution and typical curves of seepage model of water-bearing coal seam with leakage recharge[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 95-99. DOI: 10.3969/j.issn.1001-1986.2017.01.019
    [6]ZHANG Shuangbin, SU Xianbo, GUO Hongyu. Identifying method of leakage recharge in CBM wells[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(5): 29-32. DOI: 10.3969/j.issn.1001-1986.2013.05.006
    [7]LAI Bailian, WU Junhu. Remote sensing investigation of Jincheng goaf and stability evaluation[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(6): 32-35. DOI: 10.3969/j.issn.1001-1986.2011.06.008
    [8]LI Dong-lin, JIANG Zhen-quan, YANG Cang-xun, JIA Shi-lin. Chemical grouting technology for leakage-prevention of deep shaft wall rockwith high inclined angle and fine fissure[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(4): 25-28.
    [9]Zhang Peihe, Hu Shaoxiang. STUDY ON THE ROCK MASS STABILITY IN COAL MINING[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(S1): 10-13.
    [10]Wang Xin, Yang Yingtao. THE ANALYSIS OF WATER INRUSH CHARACTERISTICS BY VERTICAL LEAKAGE-CONDUCTION IN NORTH CHINA-TYPE COAL MINE[J]. COAL GEOLOGY & EXPLORATION, 1997, 25(S1): 42-44.
  • Cited by

    Periodical cited type(22)

    1. 郭洋洋. 论一种实现煤矿地质测量信息透明化的方法. 内蒙古煤炭经济. 2025(03): 47-49 .
    2. 何文斌. 煤矿巷道三维激光扫描测量精度研究. 内蒙古煤炭经济. 2025(04): 25-27 .
    3. 陈晓伟,陈雷,李猛,胡成军,宋磊,袁鹏喆. 一种长巷道形变监测中轴线提取及断面构建方法. 工矿自动化. 2024(02): 35-41 .
    4. 鞠哲. 综采工作面三维防爆巡检机器人设计及试验. 煤矿机械. 2024(04): 8-10 .
    5. 王嘉伟,王海军,吴汉宁,吴艳,韩珂,程鑫,董敏涛. 基于三维地质建模技术的煤矿隐蔽致灾因素透明化研究. 工矿自动化. 2024(03): 71-81+121 .
    6. 汪卫兵,侯学谦,赵栓峰,贺海涛,邢志中,路正雄. 基于残差优化的综采工作面煤壁点云补全方法. 工矿自动化. 2024(06): 120-128 .
    7. 贾建龙,王志鹏,赵耀斌,刘飞,贾明超,高子龙,呼雨,陈利剑. 智能化矿用喷浆机器人研究及应用. 中国煤炭. 2024(07): 91-96 .
    8. 薛旭升,杨星云,岳佳宁,王川伟,毛清华,马宏伟,王荣泉. 煤矿巷道空间毫米波雷达测量特性与重建方法. 煤田地质与勘探. 2024(10): 186-194 . 本站查看
    9. 林舒萍,宋晓,张铃. 基于三维激光扫描技术的智能制造生产线目标检测研究. 激光杂志. 2024(10): 227-231 .
    10. 徐鑫乾,李海涛,吴雪,李成,王红星,王海楠. 基于云模型的激光点云数据快速计算算法. 自动化技术与应用. 2024(11): 107-110 .
    11. 刘敬东,李旭,郑志强,苟丙荣,韩维新,巩泽文. 激光SALM技术在煤矿巷道形变监测与支护中的应用. 矿山机械. 2024(12): 52-57 .
    12. 袁林山,崔周烽,许长辉,薛松超. 典型地下空间穿戴式三维激光扫描精度分析. 导航定位学报. 2024(06): 76-83 .
    13. 贾建称,贾茜,桑向阳,吴艳. 我国煤矿地质保障系统建设30年:回顾与展望. 煤田地质与勘探. 2023(01): 86-106 . 本站查看
    14. 景宁波,马宪民,郭卫,秦学斌. 改进动态半径的矿井激光雷达点云滤波算法. 西安科技大学学报. 2023(02): 406-413 .
    15. 常巧梅,杨静,阎跃观. 基于三维激光扫描技术的巷道变形测量方法. 煤炭技术. 2023(06): 30-32 .
    16. 顾海荣,罗佳,高子渝,杨文娟,韩帅. 基于深度相机的大直径救援井三维模型重建研究. 煤田地质与勘探. 2023(05): 188-197 . 本站查看
    17. 戴文祥,陈雷,闫鹏飞,王利欣,李波,袁鹏喆. 基于三维激光扫描的煤矿巷道形变监测方法. 工矿自动化. 2023(10): 61-67+95 .
    18. 董兴旺. 从智能化共性问题看柳林煤矿智能化未来发展方向. 山西煤炭. 2022(02): 95-99 .
    19. 杨洪涛,于印,许吉禅,沈梅,陆广慧. 基于线扫描原理的煤矿巷道变形测量系统. 工矿自动化. 2022(07): 113-117+148 .
    20. 李梅,康济童,刘晖,李兆阳,刘曦,朱青,肖彬虎. 基于BIM与GIS的矿山巷道参数化三维建模技术研究. 煤炭科学技术. 2022(07): 25-35 .
    21. 亓玉浩,关士远. 基于激光SLAM的综采工作面实时三维建图方法. 工矿自动化. 2022(11): 139-144 .
    22. 俞艳波,李小松,苏海华,李琦,卢进宏. 便携式三维激光扫描技术在矿山地下巷道可视化建模中的应用. 北京测绘. 2022(12): 1702-1707 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (123) PDF downloads (13) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return