ZHANG Baoxin, FU Xuehai, ZHANG Qinghui, ZHOU Baoyan, LIU Zheng. Adsorbability of shale in coal measures and its influencing factors[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(1): 56-63. DOI: 10.3969/j.issn.1001-1986.2019.01.008
Citation: ZHANG Baoxin, FU Xuehai, ZHANG Qinghui, ZHOU Baoyan, LIU Zheng. Adsorbability of shale in coal measures and its influencing factors[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(1): 56-63. DOI: 10.3969/j.issn.1001-1986.2019.01.008

Adsorbability of shale in coal measures and its influencing factors

Funds: 

Coal-based Key Science and Technology Project in Shanxi Province(MQ2014-02)

More Information
  • Received Date: March 14, 2018
  • Published Date: February 24, 2019
  • In order to reveal the adsorption and gas-bearing characteristics of shale in coal measures, this study was based on the gas content, isotherm adsorption, high-pressure mercury injection, and liquid nitrogen adsorption of more than 200 coal shale in six major coal fields in Shanxi Province and Junggar basin. XRD diffraction and other measured data, the adsorption and gas characteristics of shale were analyzed, and the influencing factors were discussed. The results show that the measured gas content of shale is between 0-5.87 cm3/g, concentrated at 0.90-2.00 cm3/g; VL is between 0.11-6.3 cm3/g with an average of 1.57 cm3/g. The adsorption capacity of shale gas was strong; pL ranged from 0.16 to 8.65 MPa with an average of 3.28 MPa; the maximum adsorption capacity was positively correlated with porosity, organic matter abundance, organic matter maturity, and quality score of clay mineral. The relationship is negatively correlated with the quality score of illite-montmorillonite mixed layer and the average pore size.
  • [1]
    张秋生. 低-中阶煤及煤系泥页岩吸附性及其影响因素[D]. 徐州:中国矿业大学,2016.
    [2]
    张培河,刘云亮,贾立龙. 鄂尔多斯盆地东部上古生界煤系页岩气藏特征及勘探方向[J]. 煤田地质与勘探,2016,44(4):54-58.

    ZHANG Peihe,LIU Yunliang,JIA Lilong. Shale gas reservoir characteristics of the Upper Paleozoic coal measures and exploration direction in eastern Ordos basin[J]. Coal Geology & Exploration,2016,44(4):54-58.
    [3]
    顾志翔,彭勇民,何幼斌,等. 湘中坳陷二叠系海陆过渡相页岩气地质条件[J]. 中国地质,2015,42(1):288-299.

    GU Zhixiang,PENG Yongmin,HE Youbin,et al. Geological conditions of Permian sea-land transitional facies shale gas in the Xiangzhong depression[J]. Chinese Geology,2015,42(1):288-299.
    [4]
    曹代勇,王崇敬,李靖,等. 煤系页岩气的基本特点与聚集规律[J]. 煤田地质与勘探,2014,42(4):25-30.

    CAO Daiyong,WANG Chongjing,LI Jing,et al. Basic characteristics and accumulation rules of shale gas in coal measures[J]. Coal Geology & Exploration,2014,42(4):25-30.
    [5]
    傅雪海,德勒恰提·加娜塔依,朱炎铭,等. 煤系非常规天然气资源特征及分隔合采技术[J]. 地学前缘,2016,23(3):36-40.

    FU Xuehai,DELCHATI Ganatayi,ZHU Yanming,et al. Resources characteristics and separated reservoirs drainage of unconventional gas in coal measures[J]. Earth Science Frontiers, 2016,23(3):36-40.
    [6]
    陈晶,黄文辉,陈燕萍,等. 沁水盆地煤系地层页岩储层评价及其影响因素[J]. 煤炭学报,2017,42(增刊1):215-224.

    CHEN Jing,HUANG Wenhui,CHEN Yanping,et al. Evaluation of shale reservoirs in coal-bearing strata of Qinshui basin and its influencing factors[J]. Journal of China Coal Society,2017, (S1):215-224.
    [7]
    杨承伟,李靖,王安民,等. 木里煤田煤系泥页岩储层特征研究[J]. 中国煤炭地质,2017,29(4):23-30.

    YANG Chengwei,LI Jing,WANG Anmin,et al. Coal measures argillutite reservoir features in Muri coalfield[J]. China Coal Geology,2017,29(4):23-30.
    [8]
    卜红玲,琚宜文,王国昌,等. 淮南煤田煤系泥页岩组成特征及吸附性能[J]. 中国科学院大学学报,2015,32(1):82-90.

    BU Hongling,JU Yiwen,WANG Guochang,et al. Composition and adsorptivity of shales in coal-bearing rock strata of Huainan coalfield[J]. Journal of the University of Chinese Academy of Sciences,2015,32(1):82-90.
    [9]
    彭超,潘结南,万小强,等. 禹州煤田煤系泥页岩黏土矿物对孔隙结构和甲烷吸附性能的影响[J]. 中国煤炭,2017,43(6):46-52.

    PENG Chao,PAN Jienan,WAN Xiaoqiang,et al. Effect of clay minerals of coal-bearing shale on pore structure and methane adsorption property in Yuzhou coalfield[J]. China Coal,2017, 43(6):46-52.
    [10]
    李贵红. 筠连煤田晚二叠世煤系页岩储层初步评价[J]. 煤炭科学技术,2015,43(10):127-132.

    LI Guihong. Preliminary assessment for shale reservoir of Late Permian coal measures in Junlian coalfield[J]. Coal Science and Technology,2015,43(10):127-132.
    [11]
    孙彩蓉,唐书恒,魏建光. 中国南方海相页岩气与华北煤系页岩气储层特征差异分析[J]. 中国矿业,2017,26(3):166-170.

    SUN Cairong,TANG Shuheng,WEI Jianguang. The differences of reservoir features between southern marine shale gas and northern coal-bearing shale gas in China[J]. China Mining Magazine,2017,26(3):166-170.
    [12]
    SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity(Recommendations 1984)[J]. Pure and Applied Chemistry,1985,57(4):603-619.
    [13]
    Liu Y,Zhu Y M. Comparison of pore characteristics in the coal and shale reservoirs of Taiyuan Formation,Qinshui basin, China[J]. International Journal of Coal Science & Technology, 2016,3(3):330-338.
    [14]
    陈尚斌,朱炎铭,王红岩,等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报,2012,37(3):438-444.

    CHEN Shangbin,ZHU Yanming,WANG Hongyan,et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan basin[J]. Journal of China Coal Society,2012,37(3):438-444.
    [15]
    钟太贤. 中国南方海相页岩孔隙结构特征[J].天然气工业, 2012,32(9):1-4.

    ZHONG Taixian. Characteristics of pore structure of marine shales in south China[J]. Natural Gas Industry,2012,32(9):1-4.
    [16]
    高为,易同生. 黔西松河井田煤储层孔隙特征及对渗透性的影响[J]. 煤炭科学技术,2016,44(2):55-61.

    GAO Wei,YI Tongsheng. Pore features of coal reservoir in Songhe mine field of west Guizhou and its impact to permeability[J]. Coal Science and Technology,2016,44(2):55-61.
    [17]
    张吉振,李贤庆,王元,等. 海陆过渡相煤系页岩气成藏条件及储层特征:以四川盆地南部龙潭组为例[J]. 煤炭学报, 2015,40(8):1871-1878.

    ZHANG Jizhen,LI Xianqing,WANG Yuan,et al. Accumulation conditions and reservoir characteristics of marine-terrigenous facies coal measures shale gas from Longtan Formation in south Sichuan basin[J]. Journal of China Coal Society,2015,40(8):1871-1878.
    [18]
    董谦,刘小平,李武广,等. 关于页岩含气量确定方法的探讨[J]. 天然气与石油,2012,30(5):34-37.

    DONG Qian,LIU Xiaoping,LI Wuguang,et al. Discussion on the determination method of shale gas content[J]. Natural Gas and Oil,2012,30(5):34-37.
    [19]
    毕赫,姜振学,李鹏,等. 渝东南地区龙马溪组页岩吸附特征及其影响因素[J].天然气地球科学, 2014, 25(2):302-310.

    BI He,JIANG Zhenxue,LI Peng,et al. Adsorption characteristic and influence factors of Longmaxi shale in southeastern Chongqing[J]. Natural Gas Geoscience,2014,25(2):302-310.
    [20]
    房立志,琚宜文,王国昌,等. 华夏陆块闽西南坳陷二叠系含有机质页岩组成及赋气孔隙特征[J]. 地学前缘,2013,20(4):229-239.

    FANG Lizhi,JU Yiwen,WANG Guochang,et al. Composition and gas-filled pore characteristics of Permian organic shale in southwest Fujian depression,Cathaysia landmass[J]. Earth Science Frontiers,2013,20(4):229-239.
    [21]
    GUO S,LYU X X,SONG X,et al. Methane adsorption characteristics and influence factors of Mesozoic shales in the Kuqa depression, Tarim basin, China[J]. Journal of Petroleum Science and Engineering,2017(157):187-195.
    [22]
    任泽樱,刘洛夫,高小跃,等. 库车坳陷东北部侏罗系泥页岩吸附能力及影响因素分析[J]. 天然气地球科学,2014,25(4):632-640.

    REN Zeying,LIU Luofu,GAO Xiaoyue,et al. Adsorption capacity and its influence factors of the Jurassic shale in the northeastern Kuqa depression[J]. Natural Gas Geoscience,2014, 25(4):632-640.
    [23]
    张雪芬,陆现彩,张林晔,等. 页岩气的赋存形式研究及其石油地质意义[J]. 地球科学进展,2010,25(6):597-604.

    ZHANG Xuefen,LU Xiancai,ZHANG Linye,et al. Occurrences of shale gas and their petroleum geological significance[J]. Advance in Earth Sciences, 2010, 25(6):597-604.
    [24]
    宋叙,王思波,曹涛涛,等. 扬子地台寒武系泥页岩甲烷吸附特征[J]. 地质学报,2013,87(7):1041-1048.

    SONG Xu,WANG Sibo,CAO Taotao,et al. The methane adsorption features of Cambrian shales in the Yangtze platform[J]. Acta Geologica Sinica,2013,87(7):1041-1048.
    [25]
    高凤琳,宋岩,姜振学,等. 黏土矿物对页岩储集空间及吸附能力的影响[J]. 特种油气藏,2017,24(3):1-8.

    GAO Fenglin,SONG Yan,JIANG Zhenxue,et al. Influence of clay minerals on shale storage space and adsorptive capacity[J]. Special Oil & Gas Reservoirs,2017,24(3):1-8.
    [26]
    李全中,蔡永乐,胡海洋. 泥页岩中黏土矿物纳米孔隙结构特征及其对甲烷吸附的影响[J]. 煤炭学报,2017,42(9):2414-2419.

    LI Quanzhong,CAI Yongle,HU Haiyang. Characteristics of nano-pore structure of clay minerals in shale and its effects on methane adsorption capacity[J]. Journal of China Coal Society, 2017,42(9):2414-2419.
    [27]
    唐书恒,范二平. 富有机质页岩中主要黏土矿物吸附甲烷特性[J]. 煤炭学报,2014,39(8):1700-1706.

    TANG Shuheng,FAN Erping. Methane adsorption characteristics of clay minerals in organic-rich shales[J]. Journal of China Coal Society,2014,39(8):1700-1706.
  • Related Articles

    [1]YAO Hui, YIN Shangxian, XU Wei, ZHANG Runqi, JIANG Zhiting. Risk assessment of floor water inrush by weighted rank sum ratio based on combination weighting[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(6): 132-137. DOI: 10.12363/issn.1001-1986.21.10.0556
    [2]REN Junhao, WANG Xinyi, WANG Qi, WANG Junzhi, ZHANG Bo, GUO Shuitao. Risk assessment of water inrush from coal seam floors based on multiple methods[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(2): 89-97. DOI: 10.12363/issn.1001-1986.21.06.0342
    [3]LI Jianlin, GAO Peiqiang, ZHAO Shuaipeng. Construction of prevention and control system for limestone water in deep coal seam:With three mines in eastern Pingdingshan coalfield as an example[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(S1): 47-51. DOI: 10.3969/j.issn.1001-1986.2019.S1.009
    [4]DAI Gelian, XUE Xiaoyuan, XU Ke, NIU Chao, YANG Tao. Risk assessment of water inrush of No.11 coal seam floor in Hancheng mining area on the basis of vulnerability index method[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 112-117,125. DOI: 10.3969/j.issn.1001-1986.2017.04.020
    [5]LYU Yuguang, QI Donghe. Technique based on “double maps” for assessment of water inrush from roof aquifer and its application——with New Shanghai No.1 coal mine at western edge of Ordos basin as example[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 108-112. DOI: 10.3969/j.issn.1001-1986.2016.05.020
    [6]YU Wenqi, QIAN Jiazhong, MA Lei, ZHAO Weidong, ZHOU Xiaoping. The water inrush risk assessment of roof of seam 13-1 in Xieqiao mine based on GIS and AHP[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(1): 69-73. DOI: 10.3969/j.issn.1001-1986.2016.01.013
    [7]QIU Mei, SHI Longqing, TENG Chao, XING Tongju, YU Fang. Evaluation of water inrush risk for No.10 coal seam floor of Zhaoguan mine field[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(3): 61-65. DOI: 10.3969/j.issn.1001-1986.2015.03.012
    [8]ZHOU Ze, ZHU Yanming. Water inrush risk evaluation of mining under pressure of Ordovician limestone water in Yuexu district in Tangshan mine[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(2): 63-66. DOI: 10.3969/j.issn.1001-1986.2015.02.013
    [9]LIU Qi-meng, LI Wen-ping, JI Zhong-kui, CHENG Wei, CENG Xian-gui, JIAO Yong-liang. The method of actual measurement coefficient of water-resisting to evaluate dangerousness of Ordovician limestone water invasion[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(4): 38-41.
    [10]Cui Kerui, Pan Yuanbo, Dou Shouchu. FORECAST TO WATER-INVASION DANGER OF THE TENTH COAL FLOOR IN ZHUXIANZHUANG-LULING COAL MINE,ANHUI[J]. COAL GEOLOGY & EXPLORATION, 1993, 21(3): 34-38.
  • Cited by

    Periodical cited type(5)

    1. 王仲学,丁仲昭,樊鑫,戴霜,马欢欢. 甘肃陇东新庄井田延安组沉积环境分析——对鄂尔多斯盆地中侏罗世早期古地理演化的启示. 沉积学报. 2023(02): 545-558 .
    2. 崔春兰,李斌,任玺宁,罗群,董振国,靳晓东. 大柳塔煤矿活鸡兔井田侏罗系延安组高分辨率层序地层及聚煤规律研究. 地质与勘探. 2020(03): 614-626 .
    3. 张建强. 高头窑益阳露天矿3煤组煤岩煤质特征及成煤环境研究. 中国煤炭地质. 2020(08): 12-19 .
    4. 周逃涛,何金先,董守华,齐亚林,任泽强,徐犇. 孙疃煤矿下石盒子组7~2煤层煤质发育特征及其地质控因. 中国煤炭地质. 2019(02): 26-31+46 .
    5. 华芳辉,刘志飞,张劲,崔茂林,贾煦. 宁东煤田红墩子矿区沉积环境对煤岩煤质的影响. 中国煤炭地质. 2019(03): 12-18 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (136) PDF downloads (15) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return