XING Xiuju, JIANG Qiping, WU Zhengfei, LI Wengang, ZHANG Yirui. Three-dimensional transient electromagnetic detection technology of fixed point in full space[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(S1): 60-65. DOI: 10.3969/j.issn.1001-1986.2018.S1.013
Citation: XING Xiuju, JIANG Qiping, WU Zhengfei, LI Wengang, ZHANG Yirui. Three-dimensional transient electromagnetic detection technology of fixed point in full space[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(S1): 60-65. DOI: 10.3969/j.issn.1001-1986.2018.S1.013

Three-dimensional transient electromagnetic detection technology of fixed point in full space

Funds: 

National Natural Science Foundation of China(NSFC41674133)

More Information
  • Received Date: May 10, 2018
  • Published Date: July 24, 2018
  • In order to accurately locate and intuitively display the water-conducting structures inside the front of the excavation roadway and in the working face in the results map, based on the original fixed-point three-dimensional transient electromagnetic advance detection technology, the three-dimensional physical simulation technology was used to simulate the water-conducting structures in different spatial locations and shapes in coal mines, and the spatial distribution characteristics of three-dimensional apparent resistivity were analyzed. The results show that the multi-turn small coil has certain directionality. When the normal line of the transceiver coil is close to the simulated body, it will produce a more obvious transient electromagnetic response signal; the water-repellent model with different position and shape, the apparent resistivity of the three-dimensional space of equipotential surface area basically coincides with its actual volumetric dimension. In the application of concealed collapse columns inside the working face 19108 of Jinggongyi Mine No. 1 in Pingshuo, the collapse columns inside the working face can be accurately displayed in the three-dimensional anomaly space, providing effective technical means for geological forecast during drivage excavation and before extraction in a working face.
  • [1]
    虎维岳.矿山水害防治理论与方法[M]. 北京:煤炭工业出版社,2005.
    [2]
    刘志新. 矿井瞬变电磁场分布规律与应用研究[D]. 徐州:中国矿业大学,2007.
    [3]
    刘盛东,刘静,岳建华. 中国矿井物探技术发展现状和关键问题[J]. 煤炭学报,2014,39(1):19-25.

    LIU Shengdong,LIU Jing,YUE Jianhua. Development status and key problems of Chinese mining geophysical technology[J]. Journal of China Coal Society,2014,39(1):19-25.
    [4]
    姜志海. 巷道掘进工作面瞬变电磁超前探测机理与技术研究[D]. 徐州:中国矿业大学,2008.
    [5]
    刘树才,岳建华,刘志新. 煤矿水文物探技术与应用[M]. 徐州:中国矿业大学出版社,2005.
    [6]
    程建远,石显新. 中国煤炭物探技术的现状与发展[J]. 地球物理学进展,2013,28(4):2024-2032.

    CHENG Jianyuan,SHI Xianxin. Current status and development of coal geophysical technology in China[J]. Progress of Geophysics,2013,28(4):2024-2032.
    [7]
    姜志海,岳建华,刘树才. 多匝重叠小回线装置的矿井瞬变电磁观测系统[J]. 煤炭学报,2007,32(11):1152-1156.

    JIANG Zhihai,YUE Jianhua,LIUShucai. Mine transient electromagnetic observation system of small multi-turn coincident configuration[J]. Journal of China Coal Society,2007,32(11):1152-1156.
    [8]
    张振勇. TEM技术在岩层富水性探测中的应用[J]. 煤田地质与勘探,2015,43(6):109-113

    . ZHANG Zhenyong. Application of TEM technique in detecting the water enrichment of strata[J]. Coal Geology & Exploration,2015,43(6):109-113
    [9]
    邢修举,于景邨. 煤矿综采面突水水源瞬变电磁探测技术及应用[J]. 能源与环保,2017,39(1):96-99.

    XING Xiuju,YU Jingcun. The application of mine transient electromagnetic detection technology on working face water inrush water[J]. China Energy and Environmental Protection,2017(1):96-99.
    [10]
    于景邨. 矿井瞬变电磁法勘探[M]. 徐州:中国矿业大学出版社,2007.
    [11]
    于景邨,刘志新. 用瞬变电磁法探查综放工作面顶板水体的研究[J]. 中国矿业大学学报,2007,36(4):542-546.

    YU Jingcun,LIU Zhixin. Research on full space transient electromagnetic techniquefor water hazard to the roof of caving exploration in coal mines[J]. Journal of China University of Mining & Technology,2007,36(4):542-546.
    [12]
    王恩营,刘山清,高荣斌,等. 基于瞬变电磁法探究中高阶煤层瓦斯含量与视电阻率关系的试验[J]. 煤田地质与勘探,2017,45(6):149-153. WANG Enying,LIU Shanqing,GAO Rongbin,et al. Transient electromagnetic exploration-based experiment on the relationship between the level of gas content and apparent resistivity in high rank coal seam[J]. Coal Geology & Exploration,2017,45(6):149-153..
    [13]
    杨海燕,岳建华. 巷道影响下三维全空间瞬变电磁法响应特征[J]. 吉林大学学报,2008,38(1):129-134.

    YANG Haiyan,YUE Jianhua. Three-dimensional full-space transient electromagnetic response characteristics under influence of roadway[J]. Journal of Jilin University,2008,38(1):129-134.
    [14]
    李明星,程久龙. 矿井瞬变电磁超前探测地质异常三维可视化[J]. 煤矿安全,2011,11(11):87-91.

    LI Mingxing,CHENG Jiulong. Mine transient electromagnetic advance detection geologic anomaly 3d visualization[J]. Safety in Coal Mines,2011,11(11):87-91.
    [15]
    李貅. 瞬变电磁测深的理论与应用[M]. 西安:陕西科学技术出版社,2002.
    [16]
    蒋宗林,田永华. 综合物探技术在陷落柱富水性评价中的应用[J]. 煤炭科学技术,2015,43(11):139-142,151.

    JIANG Zonglin,TIAN Yonghua. Integrated geophysical technology applied to watery evaluation of sinkhole[J]. Coal Science and Technology,2015,43(11):139-142,151.
  • Related Articles

    [1]HU Zhazha, ZHANG Xun, JIN Yi, GONG Linxian, HUANG Wenhui, REN Jianji, Norbert Klitzsch. A method for intelligent information extraction of coal fractures based on µCT and deep learning[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(2): 55-66. DOI: 10.12363/issn.1001-1986.24.09.0609
    [2]HU Zhazha, ZHANG Xun, JIN Yi, GONG Linxian, HUANG Wenhui, REN Jianji, Norbert Klitzsch. Intelligent coal fracture extraction method using μCT and deep learning[J]. COAL GEOLOGY & EXPLORATION.
    [3]CHEN Bo, TANG Dazhen, LIN Wenji, LI Song, ZHONG Guanghao, ZHU Xueguang. Geological modeling-based productivity response characteristics of the CBM well in Baode unitⅠ[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(5): 53-63. DOI: 10.3969/j.issn.1001-1986.2020.05.007
    [4]LI Hengle, CAO Yunxing, ZHOU Dan, CHAI Xuezhou, LIU Tongji, FENG Peiwen, SHI Bin, TIAN Lin. Fracturing parameters analysis and productivity evaluation of vertical coalbed methane wells with nitrogen foam[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(3): 65-74. DOI: 10.3969/j.issn.1001-1986.2020.03.010
    [5]HU Haiyang, JIN Jun, ZHAO Lingyun, CHEN Jie, GU Jiaoyang. Effects of pressure drop funnels model of different shapes on CBM well productivity[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 109-116. DOI: 10.3969/j.issn.1001-1986.2019.03.018
    [6]WANG Zhirong, YANG Jie, CHEN Lingxia, GUO Zhiwei. Productivity prediction of hypotonic CBM test well in Jiaozuo mining area under hydraulic fracturing[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 70-76. DOI: 10.3969/j.issn.1001-1986.2019.03.012
    [7]LIU Jia, CHEN Jun, RUI Fuxin, NING Xue, WANG Jianguo. Numerical simulation for effect of discrete fracture network on shale gas productivity of horizontal well[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 66-71. DOI: 10.3969/j.issn.1001-1986.2017.06.011
    [8]FENG Qing, TAO Honghua, HUANG Zijun, YANG Hao, YANG Bin, ZENG Ming, FAN Aibin. Prediction of CBM well productivity under variable permeability[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 62-66. DOI: 10.3969/j.issn.1001-1986.2017.01.012
    [9]LI Xiangchen, CHEN Defei, KANG Yili, MENG Xiangjuan. Characterization of pores and fractures of coal based on CT scan[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 58-62,70. DOI: 10.3969/j.issn.1001-1986.2016.05.011
    [10]SHI Wei, SANG Shuxun, ZHOU Xiaozhi, HUANG Huazhou, LIU Huihu, XU Hongjie. Analysis of the fracturing slit's delivery capacity in Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(3): 19-23,28. DOI: 10.3969/j.issn.1001-1986.2011.03.004

Catalog

    Article Metrics

    Article views (84) PDF downloads (9) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return