LIU Zuiliang, LUO Zhongqin. Predict the lithology of coalbed roof with probability neural network inversion use Sijiazhuang coalmine as an example[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(S1): 50-55. DOI: 10.3969/j.issn.1001-1986.2018.S1.011
Citation: LIU Zuiliang, LUO Zhongqin. Predict the lithology of coalbed roof with probability neural network inversion use Sijiazhuang coalmine as an example[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(S1): 50-55. DOI: 10.3969/j.issn.1001-1986.2018.S1.011

Predict the lithology of coalbed roof with probability neural network inversion use Sijiazhuang coalmine as an example

Funds: 

National Science and Technology Major Project(2016ZX05041, 2016ZX05043)

More Information
  • Received Date: May 30, 2018
  • Published Date: July 24, 2018
  • In order to study the trend of structural soft coal in Sijiazhuang coal mine, the PNN neural network inversion technique is used to invert the lithology of coal seam roof in the study area, so as to predict the structure of soft coal. Taking natural gamma curve as a constraint condition, by analyzing the response characteristics of the sandstone, mudstone density and gamma ray of the target area, the PNN inversion of the post stack 3D seismic data is carried out. The results show that the roof sandstone of No. 15 coal seam corresponds to low natural gamma value and positively correlated with the development of structural soft coal. By studying the distribution law of sandstone in coal seam roof, the spatial development characteristics of tectonic soft coal can be indirectly predicted.
  • [1]
    栾颖,冯晅,刘财,等. 波阻抗反演技术的研究现状及发展[J]. 吉林大学学报(地球科学版),2008,38(11):94-97.

    LUAN Ying,FENG Xuan,LIU Cai,et al. The research present and future of wave impedance inversion technique[J]. Journal of Jilin University(Earth Science Edition),2008,38(11):94-97.
    [2]
    罗忠琴,林建东,刘鹏. 常村煤矿3#煤层煤与瓦斯突出危险区地球物理预测方法[J]. 中国煤炭地质,2016,28(1):68-74.

    LUO Zhongqin,LIN Jiandong,LIU Peng. Coal No.3 coal and gas outburst hazard area geophysical prediction in Changcun coalmine[J]. Coal Geology of China,2016,28(1):68-74.
    [3]
    张宝水. 地震参数反演及其在岩性解释中的应用[J]. 山东地质,2002,18(1):45-49.

    ZHANG Baoshui. Seismic parameters conversion and its application in rock property explanation[J]. Shandong Geology,2002,18(1):45-49.
    [4]
    E Robein,刘立林. 利用反演进行岩性地层解释——一种综合的方法[J]. 国外油气勘探,1992,4(4):64-71.

    ROBEIN E,LIU Lilin. The use of inversion for lithology stratigraphic interpretation:A comprehensive method[J]. Oil and Gas Exploration Abroad,1992,4(4):64-71.
    [5]
    彭刘亚,崔若飞,张亚兵. 概率神经网络在地震岩性反演中的应用[J]. 煤田地质与勘探,2012,40(4):63-65,70.

    PENG Liuya,CUI Ruofei,ZHANG Yabing. Application of probabilistic neural network in seismic lithological inversion[J]. Coal Geology & Exploration,2012,40(4):63-65,70.
    [6]
    彭刘亚,崔若飞,仁川. 多参数岩性地震反演在识别煤层顶板砂岩中的应用——以新景煤矿为例[J]. 地球物理学进展,2013,28(4):2033-2039.

    PENG Liuya,CUI Ruofei,REN Chuan. Application of multi-parameter lithological seismic inversion in identifying sandstone of coalbed roof in Xinjing coalmine as an example[J]. Progress in Geophysics,2013,28(4):2033-2039.
    [7]
    程国建,周冠武,王潇潇. 概率神经网络方法在岩性识别中的应用[J]. 微计算机信息,2007,23(6-1):288-289.

    CHENG Guojian,ZHOU Guanwu,WANG Xiaoxiao. The probability neural networks for lithology identification[J]. Microcomputer Information,2007,23(6-1):288-289.
    [8]
    吴俊林,曾江辉. PNN神经网络在地震反演中的应用[J]. 内蒙古石油化工,2011(1):25-27.

    WU Junlin,ZENG Jianghui. Application of probabilistic neural networks in seismic inversion[J]. Inner Mongolia Petro Chemical Industry,2011(1):25-27.
    [9]
    杨立强,宋海斌,郝天珧. 基于BP神经网络的波阻抗反演及应用[J]. 地球物理学进展,2005,20(1):34-37.

    YANG Liqiang,SONG Haibin,HAO Tianyao. Application of impedance inversion based on BP neural network[J]. Progress in Geophysics,2005,20(1):34-37.
    [10]
    王晶,杨懋新,刘金平. 基于PNN神经网络的地震属性反演技术[J]. 科学技术与工程,2011,11(27):6539-6543.

    WANG Jing,YANG Maoxin,LIU Jinping. Attribute seismic inversions based PNN neural network[J]. Science Technology and Engineering,2011,11(27):6539-6543.
    [11]
    王恩营,殷秋朝,李丰良. 构造煤的研究现状与发展趋势[J]. 河南理工大学学报(自然科学版),2008,27(3):278-293.

    WANG Enying,YIN Qiuchao,LI Fengliang. Research state and its development trends of structure coal[J]. Journal of Henan Polytechnic University(Natural Science),2008,27(3):278-293.
    [12]
    HAMPSON D P,SCHUELKE J S,QUIREIN J A. Use of multi-attribute transforms to predict log properties from seismic data[J]. Geophysics,2001,66(1):220-236.
    [13]
    LI Juanjuan,CUI R F,PAN D M,et al. Coalfield seismic inversion using probabilistic neural network[J]. Progress in Geophysics,2012,27(2):715-720.
  • Cited by

    Periodical cited type(6)

    1. 张生,关雯元,董银萍,常锁亮,李慧婷,王唯骞. 基于拟线性Zoeppritz方程叠前反演的煤层顶板岩性及坚硬程度预测. 煤矿安全. 2023(08): 173-178 .
    2. 刘鹏. 多属性技术在山西赵庄二号井古河流冲刷带解释中的应用. 中国石油和化工标准与质量. 2022(04): 110-113 .
    3. 赵传伟. 多属性分析技术在探测煤层冲刷带中的应用. 中国煤炭地质. 2022(S2): 90-92 .
    4. 高旭锋. 属性融合技术在山西赵庄二号井断层解释中的应用. 中国石油和化工标准与质量. 2021(22): 137-139+141 .
    5. 华攸金,李希建. 基于可拓理论的煤矿安全风险预警与评估. 煤炭工程. 2020(01): 163-168 .
    6. 刘鹏. 岩性柱状数据重构拟密度反演预测煤层岩浆岩分布——以祁南煤矿103采区为例. 工程地球物理学报. 2019(04): 500-507 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (54) PDF downloads (8) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return