WEI Meng, ZENG Yifang, ZHU Jinyong, MING Junnan. Study on inhibited plugging additives of drilling fluid for coal-bearing strata[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(6): 212-216,222. DOI: 10.3969/j.issn.1001-1986.2018.06.032
Citation: WEI Meng, ZENG Yifang, ZHU Jinyong, MING Junnan. Study on inhibited plugging additives of drilling fluid for coal-bearing strata[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(6): 212-216,222. DOI: 10.3969/j.issn.1001-1986.2018.06.032

Study on inhibited plugging additives of drilling fluid for coal-bearing strata

Funds: 

National Natural Science Foundation of China(41572358)

More Information
  • Received Date: January 14, 2018
  • Published Date: December 24, 2018
  • The fractures develop, are complex and variable in coal-bearing strata, accidents occur frequently during drilling. As for this phenomenon, this paper worked from the analysis of microstructure of strata, and it was found that in the coal measures exist a large number of micro cracks containing plenty of water-sensitive inflating fillings, easily leading to the instability of coal measures. The use of Xanthan XC to reduce filtration loss and the use of ultra-fine inert material to seal the pores of coal-bearing strata and reduce permeability can reach the effect of blocking water intrusion into coal strata. Therefore, the additives of inhibitory drilling fluid system were analyzed and sifted by combining theories and experiments. The rheological and filtration properties of base slurry were tested by laboratory experiments in which different dosages of high polymer Xanthan XC, ultrafine inert material Nano silica and superfine calcium carbonate were added. With the analysis of the experimental data and simulation results, the rules were found about how the performance parameters of slurry change with different dosages (mass fraction) of XC, nano silica and superfine calcium carbonate added. The inhibition effect of XC polymer drilling fluid system was supported by expansion test and the mechanism of action of the three kinds of additives is explained from the perspective of microstructure. The research results provide a theoretical basis for the drilling of coal-bearing strata, and have certain reference value in the drilling of other strata which are similar to coal-bearing strata.
  • [1]
    夏鹏,蔡记华,范志军,等. 纳米二氧化硅对盐水钻井液性能的影响[J]. 钻井液与完井液,2015,32(3):9-12.

    XIA Peng,CAI Jihua,FAN Zhijun,et al. Effect of nano-silica on performance of brine drilling fluid[J]. Drilling Fluid & Completion Fluid,2015,32(3):9-12.
    [2]
    袁野,蔡记华,王济君,等. 纳米二氧化硅改善钻井液滤失性能的实验研究[J]. 石油钻采工艺,2013,35(3):30-33.

    YUAN Ye,CAI Jihua,WANG Jijun,et al. Experimental study on improving filtration properties of drilling fluid using silica nano-particles[J]. Oil Drilling & Production Technology,2013, 35(3):30-33.
    [3]
    褚奇,刘四海,李涛,等. 钻井液用纳米二氧化硅封堵剂的制备与性能评价[J]. 精细石油化工,2016,33(4):4-8.

    CHU Qi,LIU Sihai,LI Tao,et al. Preparation and evaluation of nano-silica plugging agent for drilling fluid[J]. Speciality Petrochemicals,2016,33(4):4-8.
    [4]
    周亮. 含煤地层护壁堵漏钻井液配制技术探讨[J]. 中国煤炭地质,2009,21(增刊2):120-122.

    ZHOU Liang. Discussion on preparation of borehole wall protecting and leak plugging drilling fluid used in coal measures strata[J]. Coal Geology of China,2009,21(S2):120-122.
    [5]
    张晓静. 水敏/松散地层钻井液的护壁机理分析与应用研究[D]. 武汉:中国地质大学,2007.
    [6]
    张杰. 低固相钻井液在煤田钻探施工中的应用[J]. 中国煤炭地质,2016,28(9):70-72.

    ZHANG Jie. Application of low solid drilling fluid in coalfield drilling[J]. Coal Geology of China,2016,28(9):70-72.
    [7]
    陈在君,刘顶运,李登前. 煤层垮塌机理分析及钻井液防塌探讨[J]. 钻井液与完井液,2007,24(4):28-29.

    CHEN Zaijun,LIU Dingyun,LI Dengqian. Mechanism of coalbed and caving and discussion about the caving prevention by drilling fluids[J]. Drilling Fluid & Completion Fluid,2007,24(4):28-29.
    [8]
    蔡记华,岳也,曹伟建,等. 钻井液润湿性影响页岩井壁稳定性的实验研究[J]. 煤炭学报,2016,41(1):228-233.

    CAI Jihua,YUE Ye,CAO Weijian,et al. Experimental study on the effect of drilling fluid wettability on shale wellbore stability[J]. Journal of China Coal Society,2016,41(1):228-233.
    [9]
    许尾,黄承建,马世清,等. MAX-SHIELD钻井液在吐哈煤系地层的应用[J]. 钻井液与完井液,2013,30(1):34-37.

    XU Wei,HUANG Chengjian,MA Shiqing,et al. Research on MAX-SHIELD drilling fluid system used in coal formation of Tuha oilfield[J]. Drilling Fluid & Completion Fluid,2013,30(1):34-37.
    [10]
    代平祥. 浅谈纳米材料的应用[J]. 大众科技,2006(8):26.

    DAI Pingxiang. Application of nanometer materials[J]. Da Zhong Ke Ji,2006(8):26.
  • Related Articles

    [1]SUN Pinghe, ZHOU Shengwei, CAO Han, GAO Qiang, CHENG Gongbi, ZHANG Hui. Application of intelligent direct push measurement while drilling device for environmental geological surveys[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(9): 156-163. DOI: 10.12363/issn.1001-1986.23.06.0315
    [2]ZHANG Jing. Design and application of the 3D model interfaces of the integrated intelligent mine control platform[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(6): 85-91. DOI: 10.12363/issn.1001-1986.23.02.0087
    [3]LI Guihong, ZHAO Peipei, WU Xinbo. Construction concept of integrated geological engineering platform for coalbed methane[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(9): 130-136. DOI: 10.12363/issn.1001-1986.21.11.0626
    [4]LI Peng, CHENG Jianyuan. Design and implementation of the geological guarantee system architecture based on microservices[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(1): 118-127. DOI: 10.12363/issn.1001-1986.21.11.0632
    [5]WANG Hao, DONG Shuning, QIAO Wei, JI Yadong, ZHU Kaipeng, ZHOU Zhenfang, NING Dianyan, SHANG Hongbo. Construction and application of remote service cloud platform for mine water hazard prevention and control[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(1): 208-216. DOI: 10.3969/j.issn.1001-1986.2021.01.022
    [6]FU Guohong, ZHANG Qianfeng, CHENG Hui, XIE Tiancai. Acquisition platform of frequency domain IP signal[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 201-207. DOI: 10.3969/j.issn.1001-1986.2019.05.028
    [7]ZHOU Xiaoxi, DENG Fan, WAN Lin, YANG Jun. Design and implementation of information management platform for big data of uranium[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(1): 6-14. DOI: 10.3969/j.issn.1001-1986.2019.01.002
    [8]ZHAO Feng. Development of BIM-based automatic monitoring platform for foundation pit engineering[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(2): 151-158. DOI: 10.3969/j.issn.1001-1986.2018.02.023
    [9]SHI Binquan, KANG Wuchen. Application of E-link electromagnetic measurement while drilling system in drilling coal bed methane well[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(2): 68-70,75. DOI: 10.3969/j.issn.1001-1986.2010.02.017
    [10]ZHANG De-min, JING Yu-long. THE FORELAND THRUST BELT IN NORTHWESTERN MARGIN OF YANGTZE PLATFORM AND THE COALFIELD STRUCTURE FEATURE[J]. COAL GEOLOGY & EXPLORATION, 1997, 25(4): 4-7.
  • Cited by

    Periodical cited type(13)

    1. 郭兴泉. 煤峪口矿首采工作面复杂地质条件“四位一体”综合探测技术研究. 晋控科学技术. 2024(01): 1-4+10 .
    2. 郭曼,杜少鹏,左兆龙,徐吉丰. 槽波地震技术在大同煤田地质构造探测中的应用. 陕西煤炭. 2024(07): 147-151 .
    3. 顾焕琪,吴荣新,沈国庆,胡泽安. 回采工作面断层构造无线电波反射测量方法研究. 煤田地质与勘探. 2022(02): 125-131 . 本站查看
    4. 蔡文芮. 基于三维地震和矿井槽波资料的工作面构造综合解释. 陕西煤炭. 2022(04): 1-4 .
    5. 王保利,金丹,张唤兰,程建远. 煤层中断层的透射槽波定量响应特征. 煤炭学报. 2022(08): 2985-2991 .
    6. 郭璐. 利用槽波层析成像技术探查工作面内隐伏地质构造. 内蒙古煤炭经济. 2022(24): 187-189 .
    7. 乔瑶峰. 地质构造复杂区域开采槽波物探技术探索与应用. 能源与环保. 2021(01): 31-34+42 .
    8. 陈超,曹路通. 基于三维数值模拟的复杂构造地区槽波精细探测研究. 能源与环保. 2021(12): 128-134 .
    9. 杨辉. 薄煤层透射槽波探测技术及应用. 煤田地质与勘探. 2020(03): 176-181+187 . 本站查看
    10. 郭曼,李志勇,何达喜. 透射槽波勘探在矿井小型构造探测中的应用研究. 能源与环保. 2020(12): 89-94 .
    11. 李江华,廉玉广,窦文武,焦阳,李梓毓. 槽波地震反射法探测地质构造应用研究. 煤炭科学技术. 2019(12): 201-206 .
    12. 田树伟,姚春艳,崔伟雄. 槽波地震探测技术在玉华煤矿开采中的应用. 能源技术与管理. 2018(03): 151-152 .
    13. 赵久斌. 基于槽波层析成像的陷落柱定位研究. 能源与环保. 2018(05): 117-121+126 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (92) PDF downloads (11) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return