XU Hao, JIA Xiaojing, ZHANG Yunfeng. Application of seismic multi-attribute analysis in sand body identification of mixed sedimentation environment: A case study of Carboniferous sand group Ⅳ in the south of Sangtamu area[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(6): 163-168. DOI: 10.3969/j.issn.1001-1986.2018.06.024
Citation: XU Hao, JIA Xiaojing, ZHANG Yunfeng. Application of seismic multi-attribute analysis in sand body identification of mixed sedimentation environment: A case study of Carboniferous sand group Ⅳ in the south of Sangtamu area[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(6): 163-168. DOI: 10.3969/j.issn.1001-1986.2018.06.024

Application of seismic multi-attribute analysis in sand body identification of mixed sedimentation environment: A case study of Carboniferous sand group Ⅳ in the south of Sangtamu area

Funds: 

National Basic Research Program of China(973 Program)(2012CB214800)

More Information
  • Received Date: October 14, 2017
  • Published Date: December 24, 2018
  • Aiming at the actual situation that the amplitude may be distorted in a mixed sedimentation environment, by using the example of Carboniferous Ⅳ sand group in the south of Sangtamu area, based on the analysis of the single well sedimentary facies, we select the useful amplitude information in sandstone to perform AVF frequency-divided inversion, combine the results with attributes, establish coupling relationship between the amplitude attribute and the sand body, establish the sand body recognition mode, and characterize the plane distribution of the sedimentary facies. The seismic reflection structure type is subdivided into four types. Based on the top surface of the Ⅳ sand group, the average crest amplitude attribute extraction was carried out 10 ms above and below, AVF frequency-divided inversion was carried out in the southwest with heavy gray matter content. There is a positive correlation between the amplitude attribute and the sand body, and the higher the sand content, the larger the amplitude. Underwater distributary channel are mainly distributed in the S1072 well area and the northwest margin of the study area. Sand flat are mainly distributed in the AT10 and S111 well areas, exhibiting a sheet. Tidal sand ridge are mainly distributed in the south, and can be used as a research area to find the key areas of lithologic traps.
  • [1]
    朱筱敏,刘长利,张义娜,等. 地震沉积学在陆相湖盆三角洲砂体预测中的应用[J]. 沉积学报,2009,27(5):915-921.

    ZHU Xiaomin,LIU Changli,ZHANG Yina,et al. On seismic sedimenttology of lacustrine deltaic depositional systems[J]. Acta Sedmentologica Snica,2009,27(5):915-921.
    [2]
    陶碧娥,傅恒. 塔河地区志留系沉积体系及储层纵向分布特征[J]. 岩性油气藏,2009,21(1):40-45.

    TAO Bi'e,FU Heng. Vertical distribution characteristics of reservoir and sedimentary system of Siliruan in Tahe area[J]. Lithologic Reservoirs,2009,21(1):40-45.
    [3]
    BROWN A R,DAHM C G,GRAEBNER R J. A stratigraphic case history using three-dimensional seismic data in the Gulf of Thailand[J]. Geophysical Prospecting,1981,29(3):327-349.
    [4]
    ZENG Hongliu,BACKUS M M,BARROW K T,et al. Stratal slicing,Part I:Realistic 3-D seismic model[J]. Geophysics, 1998,63(2):502-513.
    [5]
    姚悦,周江羽,雷振宇,等. 西沙海槽盆地强限制性中央峡谷水道地震相与内部结构的分段特征[J]. 沉积学报,2017, 35(6):1-8.

    YAO Yue,ZHOU Jiangyu,LEI Zhenyu,et al. High restriction seismic facies and inner structural segmentation features of the central canyon channel system in Xisha Trough basin[J]. Acta Sedimentologica Sinica,2017,35(6):1-8.
    [6]
    李伟,岳大力,胡光义,等. 分频段地震属性优选及砂体预测方法:秦皇岛32-6油田北区实例[J]. 石油地球物理勘探, 2017,52(1):121-130,17-18.

    LI Wei,YUE Dali,HU Guangyi,et al. Frequency-segmented seismic attribute optimization and sandbody distribution prediction:An example in North Block,Qinhuangdao 32-6 oilfield[J]. Oil Geophysical Prospecting,2017,52(1):121-130,17-18.
    [7]
    董春梅,张宪国,林承焰. 地震沉积学的概念,方法和技术[J]. 沉积学报,2006,24(5):698-704.

    DONG Chunmei,ZHANG Xianguo,LIN Chengyan. Conception,method and technology of the seismic sedmientology[J]. Acta Sedmentologica Snica,2006,24(5):698-704.
    [8]
    程顺国. 基于地质模式的多元地震属性储层预测[J]. 大庆石油地质与开发,2014,33(3):151-154.

    CHENG Shunguo. Prediction of multiple seismic attribute reservoir based on the geological modes[J]. Petroleum Geology and Oilfield Development in Daqing,2014,33(3):151-154.
    [9]
    单蕊,李元杰,王千遥. 地震沉积学在川东北YB地区沉积相分析中的应用[J]. 煤田地质与勘探,2015,43(2):91-95.

    SHAN Rui,LI Yuanjie,WANG Qianyao. Application of seismic sedimentology in sedimentary facies analysis in YB area[J]. Coal Geology & Exploration,2015,43(2):91-95.
    [10]
    齐恒,王海,董冬,等. 地震沉积学在薄储层预测中的应用:以L87井区水下扇体识别为例[J]. 地球物理学进展,2017,32(2):0709-0713.

    QI Heng,WANG Hai,DONG Dong,et al. Application of seismic sedimentology in thin reservoir prediction:Taking the identification of underwater fan in L87 well area as an example[J]. Progress in Geophysics,2017,32(2):0709-0713.
    [11]
    栗宝鹃,董春梅,林承焰,等. 不同期次浊积扇体地震沉积学研究:以车西洼陷缓坡带车40-44块沙三上亚段为例[J]. 吉林大学学报(地球科学版),2016,46(1):65-79.

    LI Baojuan,DONG Chunmei,LIN Chengyan,et al. Seismic sedimentology research on turbidite fan body of different stages:In case of the gentle slope belt of Chexi Depression's Che40-44 area of Upper Submember of Es3[J]. Journal of Jilin University(Earth Science Edition),2016,46(1):65-79.
    [12]
    张建宁,于建国.地震属性应用中的不确定性分析[J]. 石油物探,2006,45(4):373-379,408.

    ZHANG Jianning,YU Jianguo. The indetermination analysis on the seismic attribute application[J]. Geophysical Prospecting for Petroleum,2006,45(4):373-379,408.
    [13]
    JUSTICE J H,HAWKINS D J,WONG G. Multidimensional attribute analysis and pattern recognition for seismic interpretation[J]. Pattern Recognition,1985,18(6):391-399.
    [14]
    STRECKERR U,SMITH M,UDEN R,et al. Seismic attribute analysis in hydrothermal dolomite,Devonian slave point formation,Northeast British Columbia,Canada[C]//SEG Technical Program Expanded Abstracts. Denver,Colorado:SEG,2004:378-381.
    [15]
    夏竹,李中超. 井震联合薄储层沉积微相表征实例研[J]. 石油地球物理勘探,2016,51(5):1002-1011,838-839.

    XIA Zhu,LI Zhongchao. Thin reservoir sedimentary microfacies characterization based on well logging and seismic data:A case study[J]. Oil Geophysical Prospecting,2016,51(5):1002-1011, 838-839.
    [16]
    于兴河. 油田开发中后期储层面临的问题与基于沉积成因的地质表征方法[J]. 地学前缘,2012,19(2):1-14.

    YU Xinghe. Existing problems and sedimentogensis based methods of reservoir characterization during the middle and later periods of oilfield development[J]. Earth Science Frontiers, 2012,19(2):1-14.
    [17]
    郭齐军,赵省民. 塔河地区石炭系沉积特征[J]. 石油与天然气地质,2002,23(1):99-102.

    GUO Qijun,ZHAO Xingmin. Depositional characteristics of Carboniferous in Tahe region[J]. Oil & Gas Geology,2002, 23(1):99-102.
    [18]
    季玉新,刘春园,陈东,等. 分频反演方法及其在塔河A区储层预测中的应用[J]. 石油与天然气地质,2010,31(1):38-42.

    JI Yuxin,LIU Chunyuan,CHEN Dong,et al. Frequency decided inversion and its application to reservoir prediction in Block A of Tahe oil field[J]. Oil & Gas Geology,2010,31(1):38-42.
  • Cited by

    Periodical cited type(2)

    1. 文国军,黄子恒,王玉丹,史垚城,姜宇昊. 基于仿真数据驱动的激光钻进气体喷嘴结构优化. 钻探工程. 2024(03): 69-75 .
    2. 刘旭堂,黄梦婕,王伟. 机械式激光窗口结构设计与防尘罩抗风载能力研究. 四川轻化工大学学报(自然科学版). 2022(01): 59-66 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (100) PDF downloads (5) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return