LI Zhixue, LI Mingpei, SHEN Xiaolong, LU Wenyu. Genetic analysis of the bedrock top surface soil layer deletion and its significance for water prevention in Yushen mining area[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(6): 102-107. DOI: 10.3969/j.issn.1001-1986.2018.06.014
Citation: LI Zhixue, LI Mingpei, SHEN Xiaolong, LU Wenyu. Genetic analysis of the bedrock top surface soil layer deletion and its significance for water prevention in Yushen mining area[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(6): 102-107. DOI: 10.3969/j.issn.1001-1986.2018.06.014

Genetic analysis of the bedrock top surface soil layer deletion and its significance for water prevention in Yushen mining area

More Information
  • Received Date: April 24, 2018
  • Published Date: December 24, 2018
  • In order to study the genetic of the Miocene-Middle Pleistocene soil layer deletion and its relationship with the mine gushing water in Yushen mining area, we used core drilling, field observations and mathematical statistics to analyze the relationship between bedrock top elevation and soil layer residual thickness, and used the principle of "the present is the key to the past" to analyze the genesis and erosion mechanism of the soil layers. The results showed that the erosion of the soil layers in Yushen mining area was the result of the joint action of precipitation, wind, and the linear flowing water. The linear flowing water was the main controlling factor of soil layers vertical erosion until complete deletion. There was a positive linear correlation between the bedrock top elevation and soil layer residual thickness in Yushen mining area. The lack of soil layer could be used as a direct indicator of the development of paleorivers, thereby restoring the Miocene-Middle Pleistocene paleorivers formation, distribution and ancient watershed that communicated with the bedrock top surface. The aquifer filled with paleorivers on the bedrock top surface was the main source water for coal mine gushing, which would bring great harm for the coal mines safety production.
  • [1]
    杨建,梁向阳,丁湘. 蒙陕接壤区深埋煤层开发过程中矿井涌水量变化特征[J]. 煤田地质与勘探,2017,45(4),97-101.

    YANG Jian,LIANG Xiangyang,DING Xiang. Variation characteristics of mine inflow during mining of deep buried coal seams in Shaanxi and Inner Mongolia contiguous area[J]. Coal Geology & Exploration,2017,45(4):97-101.
    [2]
    李涛. 陕北煤炭大规模开采含隔水层结构变异及水资源动态研究[D]. 徐州:中国矿业大学,2012:14-35.
    [3]
    中国煤田地质总局,王双明. 鄂尔多斯盆地聚煤规律及煤炭资源评价[M]. 北京:煤炭工业出版社,1996.
    [4]
    李明培,邵龙义,董大啸,等. 鄂尔多斯盆地东缘泥质岩黏土矿物特征及其地质意义[J]. 煤田地质与勘探,2017,45(2):39-44.

    LI Mingpei,SHAO Longyi,DONG Daxiao,et al. Clay mineral characteristics and its geological significance in argillaceous rock in eastern margin of Ordos basin[J]. Coal Geology & Exploration,2017,45(2):39-44.
    [5]
    丁仲礼,孙继敏,朱日祥,等. 黄土高原红黏土成因及上新世北方干旱化问题[J]. 第四纪研究,1997,17(2):147-157.

    DING Zhongli,SUN Jimin,ZHU Rixiang,et al. Eolian origin of the red clay deposits in the loess plateau and implications for Pliocene climatic changes[J]. Quaternary Sciences,1997,17(2):147-157.
    [6]
    鹿化煜,安芷生. 黄土高原红黏土与黄土古土壤粒度特征对比:红黏土风成成因的新证据[J]. 沉积学报,1999,17(2):226-232.

    LU Huayu,AN Zhisheng. Comparison of grain-size distribution of red clay and loess-paleosol deposits in Chinese loess plateau[J]. Acta Sedimentologica Sinica,1999,17(2):226-232.
    [7]
    安芷生,孙东怀,陈明扬,等. 黄土高原红黏土序列与新近纪的气候事件[J]. 第四纪研究,2000,20(5):435-446.

    AN Zhisheng,SUN Donghuai,CHEN Mingyang,et al. Red clay sequences in Chinese loess plateau and recorded paleoclimate events of the Late Tertiary[J]. Quaternary Sciences,2000,20(5):435-446.
    [8]
    丁仲礼,杨石岭,孙继敏,等. 2.6 Ma前后大气环流重构的黄土:红黏土沉积证据[J]. 第四纪研究,1999,19(3):277-281.

    DING Zhongli, YANG Shiling, SUN Jimin, et al. Re-organization of atmospheric circulation at about 2.6 Ma over Northern China[J]. Quaternary Sciences,1999,19(3):277-281.
    [9]
    彭淑贞,郭正堂. 风成三趾马红土与第四纪黄土的黏土矿物组成异同及其环境意义[J]. 第四纪研究,2007,27(2):277-285.

    PENG Shuzhen,GUO Zhengtang. Clay mineral composition of the Tertiary red clay and the Quaternary loess-paleosols as well as its environmental implication[J]. Quaternary Sciences,2007, 27(2):277-285.
    [10]
    周忠学,孙虎,李智佩. 黄土高原水蚀荒漠化发生特点及其防治模式[J]. 干旱区研究,2005,22(1):29-34.

    ZHOU Zhongxue,SUN Hu,LI Zhipei. Study on mechanism of water-eroded desertification and its control in the loess plateau[J]. Arid Zone Research,2005,22(1):29-34.
    [11]
    陈渭南. 陕北沙黄土区现代侵蚀过程及其成因[J]. 陕西师范大学学报(自然科学版),1989,17(2):60-66.

    CHEN Weinan. The ground surface material features and the erosional interaction of wind and water in the sandy loess terrain in north Shaanxi Province[J]. Journal of Shaanxi Normal University(Natural Science Edition),1989,17(2):60-66.
    [12]
    孙继敏,丁仲礼,袁宝印,等. 再论萨拉乌苏组的地层划分及其沉积环境[J]. 海洋地质与第四纪地质,1996,16(1):23-31.

    SUN Jimin,DING Zhongli,YUAN Baoyin,et al. Stratigraphic division of the Salawusu Formation and the inferred sedimentary environment[J]. Marine Geology & Quaternary Geology,1996, 16(1):23-31.
    [13]
    郑洪汉. 中国北方晚更新世河湖相地层与风积黄土[J]. 地球化学,1989(4):343-351.

    ZHENG Honghan. Late Pleistocene fluvo-lacustrine deposits and aeolian loess in North China[J]. Geochimica,1989(4):343-351.
    [14]
    欧先交,李保生,靳鹤龄,等. 萨拉乌苏河流域萨拉乌苏组沙丘砂沉积特征[J]. 地理学报,2006,61(9):965-975.

    OU Xianjiao,LI Baosheng,JIN Heling,et al. Sedimentary characteristics of paleo-eolian dune sands in Salawusu Formation of the Salawusu river valley[J]. Acta Geographica Sinica,2006, 61(9):965-975.
    [15]
    杨劲松,王永,赵红梅. 晚更新世以来萨拉乌苏河流域主元素的地球化学特征及古环境意义[J]. 干旱区资源与环境,2016, 30(11):148-153.

    YANG Jinsong,WANG Yong,ZHAO Hongmei. The geochemical characteristics and paleoenvironmental significance based on major elements of Salawusu river valley since Late Pleistocene[J]. Journal of Arid Land Resources and Environment, 2016,30(11):148-153.
    [16]
    冯洁,王苏健,陈通,等. 生态脆弱矿区土层中导水裂缝带发育高度研究[J]. 煤田地质与勘探,2018,46(1):97-100.

    FENG Jie,WANG Sujian,CHEN Tong,et al. Height of water flowing fractured zone of soil layer in the ceologically fragile mining area[J]. Coal Geology & Exploration,2018,46(1):97-100.
    [17]
    康英. 柠条塔矿井水文地质特征研究[D]. 西安:西安科技大学,2012:42-47.
  • Related Articles

    [1]WU Peng, HU Weiqiang, LI Yangbing, MA Litao, LI Yong, ZHAO Fei, NIU Yanwei, CHEN Jianqi, LI Panpan, LIU Zaizhen, LI Chenchen, CAO Di, LIU Cheng. Geochemical characteristics and influencing factors of deep coalbed methane in the Linxing-Shenfu block[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(5): 56-66. DOI: 10.12363/issn.1001-1986.23.10.0632
    [2]ZHANG Cong, LI Mengxi, HU Qiujia, JIA Huimin, LI Kexin, WANG Qi, YANG Ruiqiang. Moderately deep coalbed methane reservoirs in the southern Qinshui Basin: Characteristics and technical strategies for exploitation[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(2): 122-133. DOI: 10.12363/issn.1001-1986.23.10.0624
    [3]ZHANG Cong, LI Mengxi, FENG Shuren, HU Qiujia, QIAO Maopo, WU Dingquan, YU Jiasheng, LI Kexin. Reservoir properties and gas production difference between No.15 coal and No.3 coal in Zhengzhuang Block, southern Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(9): 145-153. DOI: 10.12363/issn.1001-1986.21.12.0816
    [4]HE Huan, HUANG Xinying, HUANG Zaixing, ZHANG Qian, CHEN Zihao, ZHAO Han, REN Hengxing, HUANG Guanhua. Effect of kaolin on biogenic coalbed methane production and the response of microbial community[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(6): 1-10. DOI: 10.12363/issn.1001-1986.21.08.0463
    [5]SU Xianbo, WANG Lufei, ZHAO Weizhong, XIA Daping, ZHOU Yixuan, WANG Qian. Physical simulation of in-situ microbial methanation in coal reservoirs with the participation of supercritical CO2[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(3): 119-126. DOI: 10.12363/issn.1001-1986.21.11.0684
    [6]WANG Xiangye, SUN Baoping. Geochemical characteristics and their origin of CBM in Xingxian area, Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 156-164,173. DOI: 10.3969/j.issn.1001-1986.2020.04.022
    [7]YI Yongxiang, TANG Shuheng, ZHANG Songhang, YAN Xinlu, WANG Kaifeng, DANG Feng. Analysis on the type of reservoir pressure drop and drainage control of coalbed methane well in the southern block of Shizhuang[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 118-126. DOI: 10.3969/j.issn.1001-1986.2019.05.016
    [8]FENG Shuren, ZHANG Cong, ZHANG Jinxiao, LIU Zhong, CUI Xinrui, CHAO Weiwei. Gas-water differentiation characteristics of CBM reservoirs in Xiadian block, Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 129-134. DOI: 10.3969/j.issn.1001-1986.2018.05.020
    [9]XU Chao, CHEN Bingyu, WU Dun, DING Dianshi, XIA Yuanyuan, LIU Guijian. Distribution characteristics of isotope carbon and its geological origin in coal & gas carbon of Qidong coal mine, Huaibei coalfield[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 54-58. DOI: 10.3969/j.issn.1001-1986.2017.03.010
    [10]XU Gang, LI Shugang, DING Yang. Classification of coalbed methane enrichment units in Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(6): 22-26. DOI: 10.3969/j.issn.1001-1986.2013.06.006
  • Cited by

    Periodical cited type(10)

    1. 王勃,徐凤银,金雪,王立龙,屈争辉,张文胜,李志,刘国伟,张艺腾,史鸣剑. 沁水盆地郑庄区块煤层气井产出水化学成分演变及其高产响应. 石油学报. 2024(11): 1638-1651 .
    2. 王阳,向杰,秦勇,陈尚斌,朱炎铭,黄曼莉,石莹. 阳泉-晋城矿区关闭煤矿煤层气资源特征及抽采模式. 煤炭科学技术. 2024(12): 165-179 .
    3. 简阔,傅雪海,夏大平,冯睿智,李咪,吉小峰. 我国次生生物成因煤层气研究进展. 煤矿安全. 2023(04): 11-21 .
    4. 梁运培,李左媛,朱拴成,陈强,王鑫,秦朝中. 关闭/废弃煤矿甲烷排放研究现状及减排对策. 煤炭学报. 2023(04): 1645-1660 .
    5. 华明国,田林,张燕,李佳,曹永恒. 潞安矿区煤层气井产出水地球化学特征及意义. 煤田地质与勘探. 2022(02): 65-71 . 本站查看
    6. 吴金刚,毛俊睿. 中国废弃煤矿瓦斯资源评价与抽采利用研究进展. 煤矿安全. 2021(07): 162-169 .
    7. 刘建华,王生维,张晓飞. 顺煤层井煤屑录井法在废弃矿区二次开发中的应用研究. 煤炭技术. 2021(09): 11-14 .
    8. 李忠城,吴建光,王建中,吴翔,卢国军. 沁水盆地南部15号煤层和顶板K_2灰岩水文地球化学演化特征. 煤田地质与勘探. 2020(03): 75-80 . 本站查看
    9. 马凯,马钱钱,史永涛. 远红外作用下不同含水率煤体吸附/解吸能量变化规律. 煤田地质与勘探. 2020(03): 86-92 . 本站查看
    10. 王相业,孙保平. 鄂尔多斯盆地兴县地区煤层气地球化学特征及成因. 煤田地质与勘探. 2020(04): 156-164+173 . 本站查看

    Other cited types(9)

Catalog

    Article Metrics

    Article views (122) PDF downloads (9) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return