WU Guodai, GUO Dongxin, CHENG Lijun, CHENG Jun, ZHU Changsheng, XIE Qingming, LIU Daixi, WANG Kaiwen. Characteristics and revelation of pressure drop of reservoir during combined CBM production of multi-coal seams in Songzao mining area[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 123-128. DOI: 10.3969/j.issn.1001-1986.2018.05.019
Citation: WU Guodai, GUO Dongxin, CHENG Lijun, CHENG Jun, ZHU Changsheng, XIE Qingming, LIU Daixi, WANG Kaiwen. Characteristics and revelation of pressure drop of reservoir during combined CBM production of multi-coal seams in Songzao mining area[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 123-128. DOI: 10.3969/j.issn.1001-1986.2018.05.019

Characteristics and revelation of pressure drop of reservoir during combined CBM production of multi-coal seams in Songzao mining area

Funds: 

Science and Technology Plan of Chongqing Land Resource and House Administration(KJ-2015017,KJ-2018030)

More Information
  • Received Date: June 14, 2018
  • Published Date: October 24, 2018
  • Coalbed methane exploration and development of Late Permian Longtan Formation in Southwest China has achieved good results, and weak aquifer in this region restricts the drainage of coalbed methane. In order to reveal the pressure drop characteristics of different reservoirs in the coal seam group, based on the plane radial seepage theory, using the geological engineering data of well Q1 in Songzao mining area, based on the comprehensive analysis of the bottom hole flow pressure, the set pressure, the daily water production and the daily gas output data, the mathematical model of the bottom hole flow pressure of different reservoirs was established vertically, and the pressure drop of different reservoirs features was analyzed. The results show that the initial gas production time of coal seams M6, M7 and M8 was 45 d, 162 d and 217 d. The reservoir pressure and permeability controlled the reservoir feeding capacity, leading to the decrease of pressure drop effect as the layer lowered, and the critical desorption pressure of the reservoir(4.07 MPa) and the low water production(0.23 m3) affected the combined CBM extraction effect of multiple coal seams. It is an important work direction to strengthen the comprehensive study of the selected layers, the analysis of the characteristics of water production and the study of the timing of water injection, to carry out research and development of progressive production-related process equipment and engineering exploration.
  • [1]
    国土资源部油气资源战略研究中心. 全国煤层气资源评价[M]. 北京:中国大地出版社,2009:71-83.
    [2]
    邵龙义,侯海海,唐跃,等. 中国煤层气勘探开发战略接替区优选[J]. 天然气工业,2015,35(3):1-11.

    SHAO Longyi,HOU Haihai,TANG Yue,et al.Selection of strategic relay areas of CBM exploration and development in China[J]. Natural Gas Industry,2015,35(3):1-11.
    [3]
    毕彩芹,单衍胜. 杨煤参1井产量再创新高[EB/OL]. (2017-09-01)[2018-06-10] http://www.ogs.cgs.gov.cn/cgjz/hydzjz/201709/t20170901_438758.html.
    [4]
    毕彩芹,单衍胜. 川高参1井获得高产工业气流[EB/OL]. (2017-09-01)[2018-06-10] http://www.ogs.cgs.gov.cn/cgjz/hydzjz/201709/t20170901_438759.html.
    [5]
    秦勇,申建,沈玉林. 叠置含气系统共采兼容性-煤系"三气" 及深部煤层气开采中的共性地质问题[J]. 煤炭学报,2016, 41(1):14-23.

    QIN Yong,SHEN Jian,SHEN Yulin. Joint mining compatibility of superposed gas-bearing systems:A general geological problem for extraction of three natural gases and deep CBM in coal series[J]. Journal of China Coal Society,2016,41(1):14-23.
    [6]
    孟艳军,汤达祯,许浩,等. 煤层气开发中的层间矛盾问题——以柳林地区为例[J]. 煤田地质与勘探,2013,41(3):29-33.

    MENG Yanjun,TANG Dazhen,XU Hao,et al.Inter layer contradiction problem in coalbed methane development:A case study in Liulin area[J]. Coal Geology & Exploration,2013,41(3):29-33.
    [7]
    徐宏杰,桑树勋,杨景芬,等. 贵州省煤层气勘探开发现状与展望[J]. 煤炭科学技术,2016,44(2):1-7.

    XU Hongjie,SANG Shuxun,YANG Jingfen,et al. Status and expectation on coalbed methane exploration and development in Guizhou Province[J]. Coal Science and Technology,2016, 44(2):1-7.
    [8]
    秦勇,熊孟辉,易同生,等. 论多层叠置独立含煤层气系统:以贵州织金-纳雍煤田水公河向斜为例[J]. 地质论评,2008,54(1):65-70.

    QIN Yong,XIONG Menghui,YI Tongsheng,et al. On unattached multiple supersosedcoalbed-methane system:In a case of the Shuigonghesyncline,Zhijin-Nayong coalfield,Guizhou[J]. Geological Review,2008,54(1):65-70.
    [9]
    杨兆彪,秦勇,高弟,等. 煤层群条件下的煤层气成藏特征[J]. 煤田地质与勘探,2011,39(5):25-29.

    YANG Zhaobiao,QIN Yong,GAO Di,et al. Coalbed methane(CBM) reservoir-forming character under conditions of coal seam groups[J]. Coal Geology & Exploration,2011,39(5):25-29.
    [10]
    沈玉林,秦勇,郭英海,等. "多层叠置独立含煤层气系统"形成的沉积控制因素[J]. 地球科学-中国地质大学学报,2012, 37(3):573-579.

    SHEN Yulin,QIN Yong,GUO Yinghai,et al. Sedimentary controlling factor of unattached multiple superimposed coalbed methane system formation[J]. Earth Science-Journal of China University of Geosciences,2012,37(3):573-579.
    [11]
    杨兆彪,秦勇,陈世悦,等. 多煤层储层能量垂向分布特征及控制机理[J]. 地质学报,2013,87(1):139-144.

    YANG Zhaobiao,QIN Yong,CHEN Shiyue,et al. Controlling mechanism and vertical distribution characteristics of reservoir energy of multi-coalbeds[J]. Acta Geologica Sinica,2013,87(1):139-144.
    [12]
    郭晨,秦勇,卢玲玲. 黔西红梅井田煤层气有序开发的水文地质条件[J]. 地球科学进展,2015,30(4):456-464.

    GUO Chen,QIN Yong,LU Lingling. Hydrogeological conditions of orderly coalbed methane development in Hongmei well field,western Guizhou,south China[J]. Advances in Earth Science,2015,30(4):456-464.
    [13]
    郭晨,秦勇,易同生,等. 黔西肥田区块地下水动力条件与煤层气有序开发[J]. 煤炭学报,2014,39(1):115-123.

    GUO Chen,QIN Yong,YI Tongsheng,et al. Groundwater dynamic conditions and orderly coalbed methane development of Feitian block in western Guizhou,south China[J]. Journal of China Coal Society,2014,39(1):115-123.
    [14]
    葛燕燕,傅雪海,李鑫,等. 贵州珠藏向斜煤系含水系统对煤层气赋存的影响[J]. 煤炭学报,2015,40(2):403-411.

    GE Yanyan,FU Xuehai,LI Xin,et al. Influences of coal measures water-bearing system of on the coalbed methane occurrence and development in Zhucang syncline,Guizhou Province[J]. Journal of China Coal Society,2015,40(2):403-411.
    [15]
    李特社,胡刚,王少雷,等. 黔西北多层薄煤储层暂堵转向压裂技术应用[J]. 煤田地质与勘探,2018,46(2):15-21.

    LI Teshe,HU Gang,WANG Shaolei,et al. Application of temporary plugging and diverting fracturing technology for multiple and thin coal reservoir in northwestern Guizhou[J]. Coal Geology & Exploration,2018,46(2):15-21.
    [16]
    王理国,唐兆青,李玉魁,等. 煤层气井层内转向压裂技术研究与应用[J]. 煤田地质与勘探,2018,46(2):8-14.

    WANG Liguo,TANG Zhaoqing,LI Yukui,et al. Research and application of deflection fracturing technology in coalbed methane well[J]. Coal Geology & Exploration,2018,46(2):8-14.
    [17]
    傅雪海,葛燕燕,梁文庆,等. 多层叠置含煤层气系统递进排采的压力控制及流体效应[J]. 天然气工业,2013,33(11):35-39.

    FU Xuehai,GE Yanyan,LIANG Wenqing,et al. Pressure control and fluid effect of progressive drainage of multiple superposed CBM system[J]. Natural Gas Industry,2013,33(11):35-39.
    [18]
    李鑫,傅雪海,李刚. 黔西多煤层气井递进排采与分隔排采工艺探讨[J]. 煤炭科学技术,2016,44(2):22-26.

    LI Xin,FU Xuehai,LI Gang. Discussion of progressive drainage and separated reservoirs drainage of multiple CBM well in west Guizhou[J]. Coal Science and Technology,2016,44(2):22-26.
    [19]
    张建国,雷光伦,张艳玉. 油气层渗流力学[M]. 东营:石油大学出版社,2003:33-43.
    [20]
    李国彪,李国富. 煤层气井单层与合层排采异同点及主控因素[J]. 煤炭学报,2012,37(8):1354-1358.

    LI Guobiao,LI Guofu. Study on the differences and main controlling factors of the coalbed methane wells between single layer and multi-layer drainage[J]. Journal of China Coal Society, 2012,37(8):1354-1358.
    [21]
    吴国代,曾春林,程军,等. 松藻矿区地下水动力场特征及其对煤层气富集的影响[J]. 煤田地质与勘探,2018,46(4):55-60.

    WU Guodai,ZENG Chunlin,CHENG Jun,et al. Characteristics of groundwater dynamic field and its effect on coalbed methane accumulation in Songzao mining area[J]. Coal Geology & Exploration,2018,46(4):55-60.
    [22]
    全国矿产储量委员会. 矿区水文地质工程地质勘探规范:GB 12719-1991[S]. 北京:中国标准出版社,1991.
    [23]
    李正根. 水文地质学[M]. 北京:地质出版社,1980.
    [24]
    刘之的,赵靖舟,徐凤银,等. 煤层气井排采水源分析及出水量预测-以鄂尔多斯盆地东缘韩城矿区为例[J]. 天然气工业,2014,34(8):61-67.

    LIU Zhidi,ZHAO Jingzhou,XU Fengyin,et al. Analysis on water sources in a CBM well and forecast of water yield quantity:A case study from Hancheng mining area in the eastern edge in the Ordos basin[J]. Natural Gas Industry,2014,34(8):61-67.
    [25]
    孔祥文,赵庆波,孙粉锦,等. 煤层气高产富集规律及开采特征研究新进展[J]. 天然气地球科学,2011,22(4):738-746.

    KONG Xiangwen,ZHAO Qingbo,SUN Fenjin,et al. New advances of productive and enriching patterns and production characteristics of coalbed methane in China[J]. Natural Gas Geosciences,2011,22(4):738-746.
    [26]
    朱学申,梁建设,柳迎红,等. 煤层气井产水影响因素及类型研究——以沁冰盆地柿庄南区块为例[J]. 天然气地球科学, 2017,28(5):755-760.

    ZHU Xueshen,LIANG Jianshe,LIU Yinghong,et al. Influencing factor and type of water production of CBM wells:A case study of the south block of Shizhuang in Qinshui basin[J]. Natural Gas Geoscience,2017,28(5):755-760.
    [27]
    徐宏杰. 贵州省薄-中厚煤层群煤层气开发地质理论与技术[D]. 徐州:中国矿业大学,2012.
  • Related Articles

    [1]YU Xiang, YANG Ke, HE Xiang, HOU Yongqiang, WEN Zhiqiang, ZHANG Lianfu. Strength and damage characteristics of cemented gangue backfill during saturated immersion[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(2): 147-159. DOI: 10.12363/issn.1001-1986.24.05.0313
    [2]MENG Xiangzhen, ZHANG Huimei, LI Yugen, YUAN Chao, CHEN Shiguan. A dynamic damage rate-based constitutive model for rock damage[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(10): 119-128. DOI: 10.12363/issn.1001-1986.24.02.0131
    [3]MENG Xiangzhen, ZHANG Huimei, LI Yugen, YUAN Chao, CHEN Shiguan. A dynamic damage rate-based constitutive model for rock damage[J]. COAL GEOLOGY & EXPLORATION.
    [4]YU Xiang, YANG Ke, HE Xiang, HON Yongqiang, WEN Zhiqiang, ZHANG Lianfu. Study on strength and damage characteristics of saturated immersion gangue cemented backfill[J]. COAL GEOLOGY & EXPLORATION.
    [5]WEN Tao, TANG Huiming, LIU Yourong, WANG Kang, YANG Chenggang. Energy and damage analysis of slate during triaxial compression under different confining pressures[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(3): 80-86. DOI: 10.3969/j.issn.1001-1986.2016.03.015
    [6]ZHANG Limin, ZHANG Hui, LIU Hongyan. A damage constitutive model for rock mass with non-persistently closed joints under uniaxial compression load[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(1): 79-84. DOI: 10.3969/j.issn.1001-1986.2016.01.015
    [7]ZHANG Jihong, LIU Hongyan. Constitutive model of jointed rock mass by combining macroscopic and microcopic composite damage[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(6): 49-52. DOI: 10.3969/j.issn.1001-1986.2013.06.012
    [8]WANG Yiming, ZHOU Yitao, ZHOU Qingdong, DU Xigang. Variable measure of strain damage of geotechnical materials[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(1): 54-57. DOI: 10.3969/j.issn.1001-1986.2013.01.011
    [9]YE Xiao-ping, LI Man, SUN Qiang. Creep damage model of soft rock roadway[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(2): 44-46,62.
    [10]SONG Fei, ZHAO Fa-suo. Study on statistical damage constitutive model in consideration of damage threshold[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(3): 59-62.
  • Cited by

    Periodical cited type(10)

    1. 张村,刘晨熙,王永乐,徐伍艳,赵毅鑫,宋子玉. 有效应力恢复条件下水力压裂后煤层气分区渗流特征. 天然气工业. 2024(03): 152-163 .
    2. 韩文龙,李勇,陈湘生,卓启明,王延斌. 煤层气排采非饱和流阶段煤粉–气泡耦合作用机理. 煤田地质与勘探. 2023(03): 46-53 . 本站查看
    3. 韩文龙,王延斌,李勇,倪小明,吴翔,赵石虎. 煤层气低产井区增产改造地质靶区优选方法与应用. 洁净煤技术. 2023(S2): 780-788 .
    4. 韩文龙,王延斌,王力,赵石虎. 沁水盆地柿庄地区煤粉发育特征及其对产出的影响. 煤矿安全. 2023(12): 32-39 .
    5. 冯绪兴,倪小明,郝少伟,谭学斌,吴垚垒. 常村煤矿煤层气井产水/产气曲线类型及其成因分析. 中国矿业. 2021(01): 106-113 .
    6. 缪欢,王延斌,韩文龙,吴翔,赵石虎,李建红. 基于钻井液污染的煤储层类型划分及其开发特征. 中国矿业. 2021(06): 214-220 .
    7. 马东民,伋雨松,陈跃,郑超,滕金祥,马卓远,肖嘉隆. 基于煤层气井排采数据的储层含气量动态反演研究. 煤田地质与勘探. 2021(06): 67-73 . 本站查看
    8. 刘江,桑树勋,周效志,毕彩琴,金军,单衍胜. 六盘水地区煤层气井合层排采实践与认识. 煤田地质与勘探. 2020(03): 93-99 . 本站查看
    9. 韩文龙,王延斌,倪小明,李勇,陶传奇,刘振明,吴翔. 正断层发育特征对煤层气直井开发的影响——以沁水盆地南部柿庄南区块为例. 煤炭学报. 2020(10): 3522-3532 .
    10. 张荣荣,申芳. 煤层气井修井作业后排采制度探索. 陕西煤炭. 2019(06): 74-78+98 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (106) PDF downloads (16) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return