YANG Hongmin, LIANG Longhui. Influence of CO2 on the replacement effect of CH4 in coal of different metamorphic grade under isobaric diffusion[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 55-59,65. DOI: 10.3969/j.issn.1001-1986.2018.05.009
Citation: YANG Hongmin, LIANG Longhui. Influence of CO2 on the replacement effect of CH4 in coal of different metamorphic grade under isobaric diffusion[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 55-59,65. DOI: 10.3969/j.issn.1001-1986.2018.05.009

Influence of CO2 on the replacement effect of CH4 in coal of different metamorphic grade under isobaric diffusion

Funds: 

National Natural Science Foundation of China((51174081)

More Information
  • Received Date: October 27, 2017
  • Published Date: October 24, 2018
  • To study the characteristics of CH4 replacement by CO2 under isobaric diffusion, samples of metamorphic coal, anthracite, lean coal and gas-fat coal were selected to carry out experiment of isobaric diffusion replacement under different isobaric diffusion pressure. Experimental results show that with the increase of coal metamorphism, the CH4 and CO2 adsorption capacity of coal is gradually enhanced, and the CO2 adsorption capacity of coal is greater than CH4; with the increase of diffusion pressure at the experimental point, the absolute volume and replacement rate of CO2 for CH4 increases, but the CH4 replacement ratio of CO2 injection decreases. In the range of the metamorphic degree of the experimental coal samples, the CH4 replacement rate is negatively correlated with the coal metamorphism degree and ratio of replacement to CO2 injection. The research results have guiding significance for the engineering technology and the theory of CH4 replacement by injecting CO2 into coal seam.
  • [1]
    俞启香. 矿井瓦斯防治[M]. 徐州:中国矿业大学出版社, 1990:8-10.
    [2]
    BUSCH A,KROOSS B M,GENSTERBLUM Y. et al. Highpressure adsorption of methane,carbon dioxide and their mixtures on coals with a special focus on the preferential sorption behaviour[J]. Journal of Geochemical Exploration,2003,78(5):671-674.
    [3]
    KROOS B M,BERGEN F,GENSTERBLUM Y. High pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coal[J]. International Journal of Coal Geology,2002,51(2):69-92.
    [4]
    涂乙,谢传礼,李武广,等. 煤层对CO2、CH4和N2吸附/解吸规律研究[J]. 煤炭科学技术,2012,40(2):70-72.

    TU Yi,XIE Chuanli,LI Wuguang,et al. Study on CO2,CH4 and N2 adsorption and desorption law of seam[J]. Coal Science and Technology,2012,40(2):70-72.
    [5]
    FITZGERALDA J E,PANA Z,SUDIBANDRIYOA M,et al. Adsorption of methane,nitrogen,carbon dioxide and their mixtures on wet Tiffany coal[J]. Fuel, 2005, 84(18):2351-2363.
    [6]
    高莎莎,王延斌,贾立龙,等. 温度及压力对CO2置换CH4的影响[J]. 中国矿业大学学报,2013,42(5):801-805.

    GAO Shasha,WANG Yanbin,JIA Lilong,et al. Influence of temperature and pressure on the replacement of CH4 with CO2[J]. Journal of China University of Mining & Technology,2013, 42(5):801-805.
    [7]
    刘志钧. 关于煤的吸附甲烷容量的研究[J]. 煤矿安全, 1988(10):35-41.

    LIU Zhijun. Study on adsorption of CH4 in coal[J]. Safety in Coal Mines,1988(10):35-41.
    [8]
    郑贵强. 不同煤阶煤的吸附扩散及渗流特征实验和模拟研究[D]. 北京:中国地质大学(北京),2012.
    [9]
    YEE D,SEIDLE J P,HANSON W B. Gas sorption on coal and measurement of gas content[J]. Hydrocarbons from Coal. AAPG Studies in Geology,1993,38(5):203-218.
    [10]
    崔永君. 煤对CH4、N2、CO2及多组分气体吸附的研究[D]. 西安:煤炭科学研究总院西安分院,2003.
    [11]
    REEVES S R. The coal-seq project:Key results from field, laboratory,and modeling studies[C]//Proceedings of 7th Conference on Greenhouse Gas Control Technologies(GHGT7). Oxford:Elsevier Ltd.,2005:1399-1403.
    [12]
    杨宏民,许东亮,陈立伟. 注CO2置换驱替煤中甲烷定量化研究[J]. 中国安全生产科学术,2016,12(5):38-42.

    YANG Hongmin,XU Dongliang,CHEN Liwei. Quantitative study on displacement-replacement of methane in coal through CO2 injection[J]. Journal of Safety Science and Technology, 2016,12(5):38-42.
    [13]
    吴建光,叶建平,唐书恒. 注CO2提高煤层气采收率的模拟实验研究[J]. 煤田地质与勘探,2004,32(增刊1):61-64.

    WU Jianguang,YE Jianping,TANG Shuheng. Experimental research on CO2 injeciton for increasing coalbed methane production[J]. Coal Geology & Exploration,2004,32(S1):61-64.
    [14]
    杨宏民,冯朝阳,陈立伟. 煤层注氮模拟实验中的置换-驱替效应及其转化机制分析[J]. 煤炭学报,2016,41(9):2246-2250.

    YANG Hongmin,FENG Zhaoyang,CHEN Liwei. Analysis of replacement-displacement effect and its change mechanism on simulation experiment of nitrogen injection into coal seam[J]. Journal of China Coal Society,2016,41(9):2246-2250.
    [15]
    陈润,秦勇,申建,等. 二氧化碳注入煤层多用途研究[J]. 煤田地质与勘探,2008,36(6):20-23.

    CHEN Run, QIN Yong, SHEN Jian, et al. Study on multi-application of CO2 injection into coalbed[J]. Coal Geology & Exploration,2008,36(6):20-23.
    [16]
    杨宏民. 井下注气驱替煤层甲烷机理及规律研究[D]. 焦作:河南理工大学,2010.
    [17]
    CUI Xiaojun,BUSTIN R M,GREGORY D. Selective transport of CO2,CH4 and N2 in coals:Insights from modeling of experimental gas adsorption data[J]. Fuel,2004,83(3):293-303.
    [18]
    梁卫国,吴迪,赵阳升. CO2驱替煤层CH4试验研究[J]. 岩石力学与工程学报,2010,29(4):665-673.

    LIANG Weiguo,WU Di,ZHAO Yangsheng. Experimental study of coalbed methane replacement by carbon dioxide[J]. Chinese Journal of Rock Mechanics and Engineering,2010, 29(4):665-673.
    [19]
    孙丽娟.不同煤阶软硬煤的吸附-解吸规律及应用[D].北京:中国矿业大学(北京),2013
  • Related Articles

    [1]ZHAO Hongbao, ZHANG Bo, ZHANG Chi, JI Dongliang. Mining-induced fault slip: Assessment model and method for determining fault instability ranges[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(3): 23-33. DOI: 10.12363/issn.1001-1986.24.08.0558
    [2]WU Guoqing. Research and application of the seismic exploration technique using reflected in-seam waves in identifying folds and faults in coal seams[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(9): 154-165. DOI: 10.12363/issn.1001-1986.23.10.0680
    [3]XUE Honglai, WEN Zhe. The concealed small faults detection based on gas drainage boreholes along and cross the coal seam[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 69-77. DOI: 10.3969/j.issn.1001-1986.2021.03.009
    [4]WEI Zhubin, LI Qingyuan, ZHANG Minghui, LIU Jie, LI Qing. Method of full-automatic triangulation for reverse faults with overlapping area based on coal seam floor contour map[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 28-34. DOI: 10.3969/j.issn.1001-1986.2018.01.005
    [5]CHEN Jing-zhu, MA Nian-jie, LI Mei, MAO Shan-jun, XIONG Wei. A new algorithm of building coal seam TIN considering reverse faults[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(2): 10-12,17.
    [6]LI Guang-liang, XIAO Hai-hong, XU Zun-yi, ZOU Hua-sheng, WANG Yu-fei. Building complicated fault geological models with parallel outline[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(2): 22-24.
    [7]CHEN Xue-xi, WU Li-xin, CHE De-fu, HAO Hai-sen, XU Lei. 3D modeling method of geological bodies including faults based on borehole data[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(5): 5-8.
    [8]Yao Leihua. A FAST ALGORITHM OF AUTOMATICAL GENERATING TRIANGLE MESH[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(1): 39-41.
    [9]YANG Wenqiang, QIAN Jianwei, LIU Tianfang, DONG Shouhua. AUTOMATIC DETECTION OF SMALL FAULT ON SEISMIC TIME SECTION WITH COMPUTER[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(3): 46-49.
    [10]Men Guizhen, Sa Xianchun, Lei Baolin. A COMPUTER AUTOMATIC PLOTTING TECHNIQUE OF GEOLOGICAL PROFILE[J]. COAL GEOLOGY & EXPLORATION, 1995, 23(1): 34-37.

Catalog

    Article Metrics

    Article views (146) PDF downloads (14) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return