ZHANG Kun, SANG Shuxun, LIU Changjiang. Simulation experiment on the changes of CO2 burial process in deep coal seam[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 26-31. DOI: 10.3969/j.issn.1001-1986.2018.05.004
Citation: ZHANG Kun, SANG Shuxun, LIU Changjiang. Simulation experiment on the changes of CO2 burial process in deep coal seam[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 26-31. DOI: 10.3969/j.issn.1001-1986.2018.05.004

Simulation experiment on the changes of CO2 burial process in deep coal seam

Funds: 

National Natural Science Foundation of China(41330638)

More Information
  • Received Date: May 11, 2018
  • Published Date: October 24, 2018
  • The injection of carbon dioxide(CO2)will change the pore fissure structure of coal seam, which has important influence on improving the capacity of CO2 burial and enhancing methane extraction. In order to explore the evolution law of coal structure after CO2 injection, the Sihe anthracite and Xinyuan coking-lean coal in Qinshui basin were chosen to do the simulation experiment, through the test and analysis of the coal volume parameter before and after CO2 treatment, the following conclusions were obtained:CO2 injection can dissolve minerals in coal, which increases the volume of connected pores and causes the expansion of organic matter; the contribution of mineral dissolution to pore volume changes is not significant, while it leads to the conversion of a large number of closed pores into interconnected pores; the maximum volume increase of pore diameter is larger than 40 μm; the expansion of organic matter is comparatively large and its squeezing effect on pores may reduce the connectivity of coal; the effect of CO2 injection on coal structure is influenced by coal ranks and simulated burial depth.
  • [1]
    ANDERSON T R,HAWKINS E,JONES P D. CO2,the greenhouse effect and global warming:From the pioneering work of Arrhenius and Callendar to today's earth system models[J]. Endeavour,2016,40(3):178-187.
    [2]
    BACHU S,BONIJOLY D,BRADSHAW J,et al. CO2 storage capacity estimation:Methodology and gaps[J]. International Journal of Greenhouse Gas Control,2007,1(4):430-443.
    [3]
    WHITE C M,SMITH D H,JONES K L,et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery a review[J]. Energy and Fuels,2005,19(3):659-724.
    [4]
    PARKASH S,CHAKRABARRTLY S K. Porosity of coal from Alberta planes[J]. International Journal of Coal Geology,1986, 6:55-70.
    [5]
    张琨,桑树勋,刘世奇,等. 铁法矿区DT26井CO2-ECBM数值模拟及经济评价[J]. 煤炭技术,2016,35(3):94-97.

    ZHANG Kun,SANG Shuxun,LIU Shiqi,et al. Numerical simulation and economic evaluation of CO2-ECBM at well DT26 in Tiefa mine[J]. Coal Technology,2016,35(3):94-97.
    [6]
    ZHANG Kaizhong,CHENG Yuanping,LI Wei,et al. Influence of supercritical CO2 on pore structure and functional groups of coal:Implications for CO2 sequestration[J]. Journal of Natural Gas Science and Engineering,2017,40:288-298.
    [7]
    LIU Shiqi,SANG Shuxun,WANG G,et al. FIB-SEM and X-ray CT characterization of interconnected pores in high-rank coal formed from regional metamorphism[J]. Journal of Petroleum Science & Engineering,2017:148:21-31.
    [8]
    杨涛. 超临界CO2抽提对煤的改性实验研究[D]. 太原:太原理工大学,2010.
    [9]
    LIU Shiqi,MA Jingsheng,SANG Shuxun,et al. The effects of supercritical CO2 on mesopore and macropore structure in bituminous and anthracite coal[J]. Fuel,2018,223:32-43.
    [10]
    MENG Meng,QIU Zhengsong. Experiment study of mechanical properties and microstructures of bituminous coals influenced by supercritical carbon dioxide[J]. Fuel,2018,219:223-238.
    [11]
    吴建光,叶建平,唐书恒. 注CO2提高煤层气采收率的模拟实验研究[J]. 煤田地质与勘探,2004,32(增刊1):61-64

    . WU Jianguang,YE Jianping,TANG Shuheng. Experimental research on CO2 injection for increasing coalbed methane production[J]. Coal Geology & Exploration,2004,32(S1):61-64
    [12]
    刘长江. CO2地质储存煤储层结构演化与元素迁移的模拟实验研究[D]. 徐州:中国矿业大学,2010.
    [13]
    KUTCHKO B G,GOODMAN A L,ROSENBAUM E,et al. Characterization of coal before and after supercritical CO2 exposure via feature relocation using field-emission scanning electron microscopy[J]. Fuel,2013,107:777-786.
    [14]
    MASSAROTTO P,GOLDING S D,BAE J S,et al. Changes in reservoir properties from injection of supercritical CO2 into coal seams:A laboratory study[J]. International Journal of Coal Geology,2010,82(3/4):269-279.
    [15]
    LIU C J,WANG G X,SANG S X,et al. Fractal analysis in pore structure of coal under conditions of CO2 sequestration process[J]. Fuel,2015,139:125-132.
    [16]
    王晋,王延斌,王向浩,等. CO2置换CH4试验中煤体应变及渗透率的变化[J]. 煤炭学报,2015,40(增刊2):386-391.

    WANG Jin,WANG Yanbin,WANG Xianghao,et al. Variation characteristics of coal strain and permeability on coal-bed methane displacement by carbon dioxide injection[J]. Journal of China Coal Society,2015,40(S2):386-391.
    [17]
    祝捷,张敏,姜耀东,等. 煤吸附解吸CO2变形特征的试验研究[J]. 煤炭学报,2015,40(5):1081-1086.

    ZHU Jie,ZHANG Min,JIANG Yaodong,et al. Experimental study of coal strain induced by carbon dioxide sorption/desorption[J]. Journal of China Coal Society,2015,40(5):1081-1086.
    [18]
    秦勇,申建. 论深部煤层气基本地质问题[J]. 石油学报,2016, 37(1):125-136.

    QIN Yong,SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica,2016,37(1):125-136.
    [19]
    傅雪海,秦勇,韦重韬. 煤层气地质学[M]. 徐州:中国矿业大学出版社,2007.
    [20]
    张琨. 超临界CO2-H2O-煤岩反应体系影响下煤储层孔裂隙结构演化特征[D]. 徐州:中国矿业大学,2017.
  • Cited by

    Periodical cited type(4)

    1. 张遵国,钱清侠,陈毅,唐朝. 高压气态CO_2吸附/解吸作用对烟煤的孔隙结构影响研究. 安全与环境学报. 2025(01): 108-120 .
    2. 刘廷方,雷杰,黎杰,孙伟,张铎. 液态CO_2溶浸-酸化煤岩有机基团演化实验研究. 煤矿安全. 2023(11): 69-76 .
    3. 周西华,韩明旭,白刚,兰安畅,付志豪. CO_2注气压力对瓦斯扩散系数影响规律实验研究. 煤田地质与勘探. 2021(01): 81-86+99 . 本站查看
    4. 刘力源,马文成,王卫东. 超临界CO_2吸附诱发煤力学性质劣化的双重损伤效应分析. 山东科技大学学报(自然科学版). 2020(04): 79-86 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (165) PDF downloads (14) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return