SHI Xiuchang, MENG Zhaoping. Coupling effect of mining-induced strain field and permeability coefficient field in surrounding rock of working face[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(2): 143-150. DOI: 10.3969/j.issn.1001-1986.2018.02.022
Citation: SHI Xiuchang, MENG Zhaoping. Coupling effect of mining-induced strain field and permeability coefficient field in surrounding rock of working face[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(2): 143-150. DOI: 10.3969/j.issn.1001-1986.2018.02.022

Coupling effect of mining-induced strain field and permeability coefficient field in surrounding rock of working face

Funds: 

National Natural Science Foundation of China(41372163)

More Information
  • Received Date: May 04, 2017
  • Published Date: April 24, 2018
  • The properties of mining-induced rock mass deformation and permeability are basic issues for water inrush prevention in working face. Based on the theoretical analysis and numerical simulation method, the deformation and permeability characteristics of the rock and its three-dimensional quantitative relationship are analyzed. The distribution of the stress field, the permeability field and the controlling factors of the surrounding rock in the coal mining face are studied. Results show that permeability coefficient of mining-induced fracture rock mass is closely related to its strain state and strain increment, and increases with the tensile strain perpendicular to the fractures. Strata in advanced abutment pressure area of working face and overall movement belt are compressed thus exhibit decreased permeability, while strata in caving zone and shallow layer forward the working face are in the state of stretching deformation and possess increasing permeability, which shows a larger range of increasing area about permeability coefficient vertically compared to horizontally. Vertical permeability variation dominates water burst in face when coal mining is underneath water bodies. Accelerating advance speed, decreasing dip length of working face and mining height can decrease the permeability coefficient increase degree of surrounding rock, and the variation range of permeability coefficient field is limited in neighboring mining area. Therefore, the influence on primary strata permeability induced by mining is minimized.
  • [1]
    孟召平,易武,兰华,等. 开滦范各庄井田突水特征及煤层底板突水地质条件分析[J]. 岩石力学与工程学报,2009,28(2):228-237.

    MENG Zhaoping,YI Wu,LAN Hua,et al.Water inrush characteristics of Fangezhuang coalmine field in Kailuan and its geological condition analysis of water inrush from coal seam floor[J]. Chinese Journal of Rock Mechanics and Engineering, 2009,28(2):228-237.
    [2]
    KIM J M, PARIZEK R R, ELSWORTH D. Evaluation of fully-coupled strata deformation and groundwater flow in response to longwall mining[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8):1187-1199.
    [3]
    KELSALL P C,CASE J B,CHABANNES C R. Evaluation of excavation-induced changes in rock permeability[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,1984,21(84):123-135.
    [4]
    ZHANG J,SHEN B. Coal mining under aquifers in China:a case study[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(4):629-639.
    [5]
    郑少河,朱维申,王书法. 承压水上采煤的固流耦合问题研究[J]. 岩石力学与工程学报, 2000, 19(7):421-424.

    ZHENG Shaohe, ZHU Weishen, WANG Shufa. Study on the coupling problem between flow and solid of mine inconfined aquifer[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(4):421-424.
    [6]
    刘再斌. 岩体渗流-应力耦合作用及煤层底板突水效应研究[D]. 北京:煤炭科学研究总院, 2014.
    [7]
    孟召平,张娟,师修昌,等. 煤矿采空区岩体渗透性计算模型及其数值模拟分析[J]. 煤炭学报, 2016, 41(8):1997-2005.

    MENG Zhaoping, ZHANG Juan, SHI Xiuchang, et al. Calculation model of rock mass permeability in coal mine goaf and its numerical simulation analysis[J]. Journal of China Coal Society, 2016, 41(8):1997-2005.
    [8]
    李世平,李玉寿,吴振业. 岩石全应力应变过程对应的渗透率-应变方程[J]. 岩土工程学报, 1995, 17(2):231-235.

    LI Shiping, LI Yushou, WU Zhenye. The permeability-strain equations relating to complete stress-strain path of the rock[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(2):231-235.
    [9]
    孟召平,王保玉,徐良伟,等. 煤炭开采对煤层底板变形破坏及渗透性的影响[J]. 煤田地质与勘探,2012,40(2):39-43.

    MENG Zhaoping,WANG Baoyu,XU Liangwei,et al. Influence of coal mining on the deformation-failure and permeability of seam floor[J]. Coal Geology & Exploration,2012,40(2):39-43.
    [10]
    姜振泉,季梁军. 岩石全应力-应变过程渗透特性试验研究[J]. 岩土工程学报,2001,23(2):153-156.

    JIANG Zhenquan,JI Liangjun. The laboratory study on behavior of permeability of rock along the complete stress-strain path[J]. Chinese Journal of Geotechnical Engineering,2001,23(2):153-156.
    [11]
    HEILAND J. Laboratory testing of coupled hydro-mechanical processes during rock deformation[J]. Hydrogeology Journal, 2003,11(1):122-141.
    [12]
    LOUIS C. A study of groundwater flow in jointed rock and its influence on the stability of rock masses[M]. London:Imperial College of Science and Technology,1969.
    [13]
    MENG Zhaoping,SHI Xiuchang,LI Guoqing. Deformation, failure and permeability of coal-bearing strata during longwall mining[J]. Engineering Geology,2016,208:69-80.
    [14]
    LIU J,ELSWORTH D. Three-dimensional effects of hydraulic conductivity enhancement and desaturation around mined panels[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(8):1139-1152.
    [15]
    伊茂森. 神东矿区浅埋煤层关键层理论及其应用研究[D]. 徐州:中国矿业大学,2008.
    [16]
    王金安,焦申华,谢广祥. 综放工作面开采速率对围岩应力环境影响的研究[J]. 岩石力学与工程学报, 2006, 25(6):1118-1124.

    WANG Jin'an, JIAO Shenhua, XIE Guangxiang. Study on influence of mining rate on stress environment in surrounding rock of mechanized top caving mining face[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6):1118-1124.
  • Related Articles

    [1]YIN Shangxian, ZHANG Xiangwei, XU Hui, LIU Ming, XU Bin. Optimization of permeability coefficient and aquifer thickness in large-well-method[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(5): 53-56. DOI: 10.3969/j.issn.1001-1986.2015.05.013
    [2]WANG Hao, QIAO Wei, CHAI Rui. Overburden rock permeability variation and vertical zoning characteristics under the influence of coal mining[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(3): 51-55. DOI: 10.3969/j.issn.1001-1986.2015.03.010
    [3]LI Shu-gang, ZHANG Tian-jun, CHEN Zhan-qing, LI Yu-shou. Experiment research on the permeability of gas-rich coal[J]. COAL GEOLOGY & EXPLORATION, 2008, 38(4): 8-11.
    [4]ZHAO Lian-tao, YU Xu-lei, LIU Qi-meng, HU Ge. Research on rock complete stress-strain permeability experiment in coal floor[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(6): 37-40.
    [5]YUAN Zheng-rong. Research on mechanism of tectonic stress field controlling coal permeability[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(4): 23-25.
    [6]CHENG Guo-ming, HUANG Kan, WANG Si-jing. Top-coal fractures and its implication on the study of permeability in MLTCM[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(6): 19-21.
    [7]ZHANG Hui. One of parameters reflecting coal reservoir permeability——block coal rate[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(6): 21-22.
    [8]LI Shu-gang, QIAN Ming-gao, SHI Ping-wu. Permeability-strain equation relation to complete stress-strain path of coal sample[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(1): 22-24.
    [9]Li Xiaoyan, Li Jing, Yang Lijun, Lei Chongli. THE PREDICTION OF COAL RESERVOIR PERMEABILITY IN TIEFA COALFIELD[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(1): 34-36.
    [10]Li Zhenshuan. CALCULATION OF THE COEFFICIENT OF PERMEABILITY WITH THE USE OF HYDROCHEMICAL METHOD[J]. COAL GEOLOGY & EXPLORATION, 1995, 23(2): 37-41.
  • Cited by

    Periodical cited type(20)

    1. 杨科,于祥,何祥,侯永强,张连富. 不同含水状态矸石胶结充填体能量演化与损伤特性研究. 岩土力学. 2025(01): 26-42 .
    2. 王波,周俊丽,翟龙虎,张超,王家乐,宋杰. 风积沙-萘系减水剂充填材料流动性测试研究. 兵器材料科学与工程. 2025(01): 94-100 .
    3. 董书宁,于树江,董兴玲,张步勤,郭小铭,王晓东,王凯,朱世彬,武博强,刘磊. 煤基固废与高盐废水“固液协同”充填处置关键技术. 煤田地质与勘探. 2025(01): 163-173 . 本站查看
    4. 于祥,杨科,何祥,侯永强,文志强,张连富. 饱和浸水过程矸石胶结充填体强度及损伤特征. 煤田地质与勘探. 2025(02): 147-159 . 本站查看
    5. 程强强,汪浩东,阴琪翔,赵明翔,姚越,闫宝峰. 玻璃纤维改性煤基固废胶结充填材料性能研究. 矿业安全与环保. 2024(01): 161-167+174 .
    6. 周天璧,蒋波,罗正东. 碱激发胶凝材料在充填领域的应用及发展. 山西建筑. 2024(07): 108-111 .
    7. 黄鹏程,蔡飞飞,吴天才,赵辉,郭伟勇,梁永平,祁风华. 宁东能源化工基地燃煤电厂粉煤灰的矿物学及元素地球化学特征. 洁净煤技术. 2024(03): 145-152 .
    8. 刘浪,罗屹骁,朱梦博,苏臣,吴涛涛,王建友,杭彦龙. 建筑物下特厚煤层镁渣基全固废连采连充开采技术与实践. 煤炭科学技术. 2024(04): 83-92 .
    9. 张丽维,侯恩科,段中会,付德亮,贺丹. 基于AHP熵权TOPSIS模型的矸石充填方案评价和优选研究. 中国煤炭. 2024(05): 120-126 .
    10. 杨科,张继强,何祥,魏祯,赵新元. 多源煤基固废胶结充填体力学及变形破坏特征试验研究. 煤田地质与勘探. 2024(06): 102-114 . 本站查看
    11. 郭昆明. 智能化连续长距离注浆系统的研制及现场实践. 煤矿机电. 2024(03): 1-5 .
    12. 王思云,任美嘉,周进生. 任家庄煤矿绿色充填示范工程经济社会效益评价研究. 能源科技. 2024(06): 27-30+35 .
    13. 李运红,王光炎,乔森,郭月明,刘娟,武亚磊. 全固废流态化材料充填性能研究. 人民长江. 2024(S2): 257-262 .
    14. 刘剑平,谢国帅,曹园章,陈炜旻,白晓红. 盐酸溶液环境下RM-CMK地聚合物的强度机理研究. 非金属矿. 2023(02): 9-12 .
    15. 侯典臣,郇恒恒. 工业废料氟石膏基充填材料试验研究. 煤矿现代化. 2023(04): 58-61 .
    16. 罗正东,蒋波,章本本,邓代强,李翔. 碱激发金矿粉充填材料力学性能及微观分析. 矿冶工程. 2023(04): 21-25 .
    17. 辛亚军,杨俊鹏,陈祖国,王晓鹏,任金武,吴春浩. 薄分层软顶间隔柔模承载解析与快速留巷技术. 采矿与安全工程学报. 2023(06): 1161-1176 .
    18. 周瑶,刘长友,谢志清,潘海洋. 粒径对煤矸石浆液的性能影响研究. 矿业研究与开发. 2023(12): 118-123 .
    19. 李硕森,徐青云,吴季洪. 膏体充填开采覆岩移动特征研究. 山西煤炭. 2023(04): 7-13 .
    20. 殷文文,张理群,丁丹,单士锋,陈永春,安士凯,郑刘根. 淮南潘一矿煤基固废精细化学结构及重金属生态风险评价. 煤田地质与勘探. 2023(12): 176-184 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (127) PDF downloads (7) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return